HUSCAP logo Hokkaido Univ. logo

Hokkaido University Collection of Scholarly and Academic Papers >
Graduate School of Science / Faculty of Science >
Hokkaido University Preprint Series in Mathematics >

On a ramification bound of semi-stable torsion representations over a local field

Files in This Item:
pre917.pdf222.82 kBPDFView/Open
Please use this identifier to cite or link to this item:http://doi.org/10.14943/84066

Title: On a ramification bound of semi-stable torsion representations over a local field
Authors: Hattori, Shin Browse this author
Issue Date: 16-Jul-2008
Journal Title: Hokkaido University Preprint Series in Mathematics
Volume: 917
Start Page: 1
End Page: 30
Abstract: Let $p$ be a rational prime, $k$ be a perfect field of characteristic $p$, $W=W(k)$ be the ring of Witt vectors, $K$ be a finite totally ramified extension of $\Frac(W)$ of degree $e$ and $r$ be a non-negative integer satisfying $r<p-1$. Let $V$ be a semi-stable $p$-adic $G_K$-representation with Hodge-Tate weights in $\{0,\dots,r\}$. In this paper, we prove the upper numbering ramification group $G_{K}^{(j)}$ for $j>u(K,r,n)$ acts trivially on the mod $p^n$ representations associated to $V$, where $u(K,0,n)=0$, $u(K,1,n)=1+e(n+1/(p-1))$ and $u(K,r,n)=1-p^{-n}e(K(\zeta_p)/K)^{-1}+e(n+r/(p-1))$ for $r>1$.
Type: bulletin (article)
URI: http://hdl.handle.net/2115/69724
Appears in Collections:理学院・理学研究院 (Graduate School of Science / Faculty of Science) > Hokkaido University Preprint Series in Mathematics

Submitter: 数学紀要登録作業用

Export metadata:

OAI-PMH ( junii2 , jpcoar )


 

Feedback - Hokkaido University