HUSCAP logo Hokkaido Univ. logo

Hokkaido University Collection of Scholarly and Academic Papers >
Graduate School of Engineering / Faculty of Engineering >
Peer-reviewed Journal Articles, etc >

An Experimental Investigation on the Creep Behavior of Deep Brittle Rock Materials

Files in This Item:

The file(s) associated with this item can be obtained from the following URL: https://doi.org/10.3390/ma15051877


Title: An Experimental Investigation on the Creep Behavior of Deep Brittle Rock Materials
Authors: Chen, Haozhe Browse this author
Shao, Zhushan Browse this author
Fujii, Yoshiaki Browse this author →KAKEN DB
Keywords: creep
brittle rock
moisture
digital image correlation (DIC)
acoustic emission (AE)
Issue Date: Mar-2022
Publisher: MDPI
Journal Title: Materials
Volume: 15
Issue: 5
Start Page: 1877
Publisher DOI: 10.3390/ma15051877
Abstract: The stability of deep rock engineering, especially during the excavation, is inextricably linked to the time-dependent mechanical properties of brittle rock. Therefore, the uniaxial creep test in a multilevel loading path is carried out, accompanying the real-time DIC (digital image correlation) and AE (acoustic emission) technologies. For the quartz sandstone, the lateral strain is more sensitive to increasing stress levels, and the lateral ductility is more significant during the creep process. The saturated quartz sandstone shows a certain bearing capacity before the volumetric dilation predominance. The softening effect of moisture causes a nearly invariable Poisson's ratio during the middle stress stages, as well as the more notable increasing trend of a steady creep rate with an increasing stress level, reflected by the larger slope and the intercept in the fitting relations. The main shear pattern and the combination of the shear and splitting failures are separately shown by the dry and saturated quartz sandstone. For the granite, both compression and extension exist in the creep deformation, and the failure may first occur in the prominent deformation area with a cracking noise. The AE hits present a similar time-dependent behavior to the strain of rock, and the attenuation trend happens in both the AE amplitude and energy before the rock enters the unsteady phase. The incomplete specimen of granite exhibits a lower strength and a larger deformation, owing to the more remarkable damage accumulation reflected by the spatial distribution of the AE event points.
Type: article
URI: http://hdl.handle.net/2115/85055
Appears in Collections:工学院・工学研究院 (Graduate School of Engineering / Faculty of Engineering) > 雑誌発表論文等 (Peer-reviewed Journal Articles, etc)

Export metadata:

OAI-PMH ( junii2 , jpcoar_1.0 )

MathJax is now OFF:


 

 - Hokkaido University