HUSCAP logo Hokkaido Univ. logo

Hokkaido University Collection of Scholarly and Academic Papers >
Theses >
博士 (理学) >

中性子魔法数28の消失に伴う多様な核変形の研究

Files in This Item:
Yoshiki_Suzuki.pdf9.02 MBPDFView/Open
Please use this identifier to cite or link to this item:https://doi.org/10.14943/doctoral.k14784
Related Items in HUSCAP:

Title: 中性子魔法数28の消失に伴う多様な核変形の研究
Authors: 鈴木, 祥輝 Browse this author
Issue Date: 24-Mar-2022
Abstract: 原子核は、Fermi粒子である2種類の核子(陽子と中性子)で構成される有限量子多体系である。原子が特定の電子数で安定な閉殻構造をとるのと同様に、原子核も特定の核子数で安定な閉殻構造をとり、その数を魔法数と呼ぶ。魔法数に等しい陽子あるいは中性子を持つ原子核は安定になり、その形は球形となることが、安定な核を研究対象とする従来の核物理の常識であった。ところが、陽子数と中性子数とが大きく異なる不安定核では、閉殻構造は失われ(魔法数の消失)、核の性質は著しく変化することがわかってきた。例えば、大きな変形や、ハロー構造やクラスター構造といった特異な構造が発達する事が明らかになった。そのため、不安定核の性質を知るためには、魔法数消失の理解が不可欠である。現代の核物理では、魔法数が消失している原子核、魔法数消失による核構造の変化、その変化が観測量に与える影響、また、魔法数が消失する原因を調べる研究が中心的課題の1つとなっている。本研究では、魔法数の1つである中性子魔法数28の消失に着目する。この魔法数が消失することで、多様な変形状態が低エネルギーに共存、混合する(変形共存現象)と考えられ、今後実験データも増えると期待されている。そのため、系統的に魔法数が消失する原子核を探り、どのような変形、及び変形共存するかを明らかにする理論研究が必要である。また、変形共存が起こる原因を明らかにすることも重要な課題である。そのためには、核子の自由度から出発し、核の様々な形状を制限無く記述できる微視的模型による研究が必要であるが、そうした模型は限られており、系統的研究も十分ではない。 そこで、微視的核模型の1つである反対称化分子動力学を用いて、中性子数が26, 28, 30の中性子過剰な不安定核(Mg, Si, S, Ar同位体)の構造を系統的に調べた。反対称化分子動力学は、核子自由度から核構造を形状の仮定無しに記述できる。また、生成座標法と組み合わせることで、様々な変形状態の重ね合わせによって、変形共存を記述できる。 まず、エネルギー曲面と変形パラメーターの値から、基底状態の変形の程度と変形の種類を調べた。その結果、どの核の基底状態も大きく変形していることを示し、観測されている小さな第1 励起状態のエネルギーや大きな電気4重極遷移強度は、基底状態の変形に起因することを示した。さらに、中性子数が26, 30の核は3軸非対称変形するものが多いことがわかった。3軸非対称変形を裏付ける観測量として、角運動量3+ 状態のエネルギーを議論した。また、中性子数が26である44Arの電気4重極モーメントの測定値は、44Arの3軸非対称変形と無矛盾であることを示した。 次に、魔法数が消失する様子と、核変形が起こる原因を明らかにするために、陽子と中性子のFermi面構造を調べた。その結果、今回調べた全ての核では魔法数が消失し、変形が引き起こされることが裏付けられた。さらに、魔法数28が消失する明確な境界は存在せず、変形の仕方によって、魔法数28 が消失する機構が異なることを初めて指摘した。 さらに、中性子数が28の核(40Mg, 42Si, 44S)では、低励起状態に0+2状態が存在し、変形共存が起こることがわかった。共存する変形状態とそれらが混合する割合は、核によって大きく異なっており、その違いが単極遷移強度に強く反映されることを初めて示した。
Conffering University: 北海道大学
Degree Report Number: 甲第14784号
Degree Level: 博士
Degree Discipline: 理学
Examination Committee Members: (主査) 教授 木村 真明, 教授 小林 達夫, 准教授 平林 義治, 講師 堀内 渉
Degree Affiliation: 理学院(宇宙理学専攻)
Type: theses (doctoral)
URI: http://hdl.handle.net/2115/85875
Appears in Collections:課程博士 (Doctorate by way of Advanced Course) > 理学院(Graduate School of Science)
学位論文 (Theses) > 博士 (理学)

Export metadata:

OAI-PMH ( junii2 , jpcoar_1.0 )

MathJax is now OFF:


 

 - Hokkaido University