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Abstract

Periodic orbits for homeomorphisms on the plane give mathematical braids,
which are topologically classified into three types by Thurston-Nielsen (T-N)
theory; (1) periodic, (2) reducible, and (3) pseudo-Anosov (pA). If the braid
is pA, then the homeomorphism must have an infinitely many number of pe-
riodic orbits of distinct periods. This kind of complexity induced by the pA
braid is called “topological chaos”, which was introduced by Boyland et. al
[4] recently. We investigate numerically the topological chaos embedded in
the particle mixing by the blinking vortex system introduced by Aref [1]. It
has already been known that the system generates the chaotic advection due
to the homoclinic chaos, but the chaotic mixing region is restricted locally
in the vicinity of the vortex points. In the present study, we propose an in-
genious operation of the blinking vortex system that defines a mathematical
braid of pA type. The operation not only generates the chaotic mixing region
due to the topological chaos, but also ensures global particle mixing in the
whole plane. We give a mathematical explanation for the phenomenon by the
T-N theory and some numerical evidences to support the explanation. More-
over, we make mention of the relation between the topological chaos and the
homoclinic chaos in the blinking vortex system.

Keywords: Topological chaos, blinking vortex, chaotic advection,
Thurston-Nielsen theory, braids

1 Introduction

For a given velocity field u(x,t) in x € R? and t € R, a light and inert particle
(passive scalar) is advected by the following ordinary differential equation:

axp

dt = u(xl)a t)7 X;D(O) = Xpo,

in which x,(¢) € R? represents the position of the passive scalar. The evolution
of the velocity field u is described by the fluid equations such as the Navier-Stokes



equations, the Euler equations and the Stokes equations. The advection equation
gives the Lagrangian description of the motion of fluid particles. When the particles
show chaotic behavior, we call it “the chaotic advection”. The topic has been
attracting many researchers for the last several decades, since the chaotic advection
is observed even if the flow itself exhibits no chaotic behavior. A brilliant survey in
terms of the development of the topic is given by Aref [2].

When we focus on the two-dimensional incompressible flows in particular, the
velocity field is derived from a stream function, say W, as follows.

(8\11 8\11)
u=|—,——|.
dy’' Ox
Hence, the equation of motion for the passive scalar located at x, = (z, yp) is given
by

dr, 0V dy, 0V

dt oy’ dt Oz’
The advection equations are the Hamiltonian dynamics, whose Hamiltonian is
equivalent to the stream function. When the stream function is time-independent,
the particles show no chaotic behavior, since it is integrable. On the other hand,
however, the time-dependent Hamiltonian dynamical system could generate the
chaotic advection. The theory of dynamical systems explains that the phenomenon
occurs when the stable and the unstable manifolds of the hyperbolic fixed points
for the flow cross transversely, which is known as the homoclinic chaos.

On the other hand, Boyland et al.[4] introduced the another notion of topological
chaos for the chaotic advection. They considered particle mixing experimentally
by three batch stirrers in a two-dimensional disk filled with viscous fluid, called
a batch stirring device, and observed the chaotic particle mixing when the batch
stirrers are moved in some specific way. To explain the chaotic mixing in the
batch stirring device, they adopt Thurston-Nielsen theory (the T-N theory), which
indicates that any homeomorphism on a two-dimensional manifold is isotopic to one
of the following maps; periodic map, pseudo-Anosov map (pA map) and reducible
map. The periodic map generates simple dynamics, since it is essentially equivalent
to a rotation map. On the other hand, the pA map generates chaotic dynamics,
because it is similar to Smale’s horseshoe map. That is, the map stretches uniformly
in one direction and contracts uniformly in another direction at every point. The
reducible map means that it can be decomposed into some restricted maps, each of
which is isotopic to either a periodic map or a pA map. We say that the isotopy
class of a given homeomorphism f is periodic, pA and reducible, if f is isotopic to
a periodic map, a pA map, and a reducible map respectively. As for the details of
the theory, see [7, 15], and a survey paper [5].

Chaotic dynamics generated by the pA map @ is essentially embedded in the
dynamics of any map that is isotopic to ®. In fact, M. Handel [11] shows that if
a homeomorphism f : M — M on a two-dimensional manifold M is isotopic to a
pA map & : M — M, then there exist a compact f-invariant set ¥ C M and a
continuous and surjective map g : Y — M such that go fly = ® o g. In other
words, chaotic dynamics of the pA map remains after continuous deformation of
®. Generally speaking, since g is many to one map, the dynamics of f is more
complicated than that of ®. Boyland et al. [4] pointed out that the motion of the
batch stirrers defined a braid that specifies some isotopy class on the punctured disk.
Therefore, if the braid is pA, it turns out that the batch stirring device generates
the complexity forced by the pA braid. They defined the term, topological chaos,
as chaotic dynamics forced by the pA map @ in the sense of Handel’s theorem.

An important property of the particle mixing due to the chaotic advection is how
efficient the particles are stirred in the chaotic mixing region. Generally speaking,



the chaotic region generated by the homoclinic chaos contains island structures
generated by the collapse of KAM tori. Thus the particles move periodically in
the local island structures, while those outside the islands moves disorderly. In
this sense, we observe the non-uniform chaotic mixing. On the other hand, in the
chaotic region generated experimentally by the topological chaos [4], the particles
are stirred quite uniformly. Hence, it seems that the topological chaos results in
the efficient particle mixing than the homoclinic chaos. However, in the meantime,
it is mathematically shown that the topological chaos forced by the pA braid is
embedded in the homoclinic chaos [9]. It indicates that a uniform chaotic mixing
region due to the topological chaos is contained somewhere in the non-uniform
chaotic mixing region due to the homoclinic chaos.

Based on the above consideration, we are going to deal with the particle mix-
ing by the blinking vortex model that Aref [1] introduced. The model is not the
Hamiltonian system because of the temporal discontinuity of the velocity field and
it is known that the particle mixing due to the homoclinic chaos occurs. See for the
details in Chapter 7.3 of Ottino’s textbook [14]. We investigate numerically how
the topological chaos is embedded in the homoclinic chaos in the mixing process.
Thus we propose a more efficient mixing mechanism by a controlled operation of
the blinking vortex device under consideration of the T-N theory.

The paper consists of five sections. In §2, we introduce our mixing device by
the blinking vortices and explain how to operate it. Then, we give numerical ex-
amples of the particle mixing by two different operations of the mixing device, and
point out remarkable differences in the chaotic mixing in §3. In §4, we suggest a
conjecture that explains the differences with the help of the T-N theory and show
some numerical evidences supporting the conjecture. Last section is devoted to the
conclusion.

2 Blinking vortex system and its operation

We consider an imaginary mixing device in two-dimensional space, in which two
mixing agitators, say P; and P, are installed. It is possible to control the direction
and the duration of the rotation of the agitators precisely. Suppose that each of
the agitators generates a vortex point regularized by the vortex method, called
a “vortex blob”, the strength of which is given by 1 when the agitator rotates
counterclockwise, and by —1 when it rotates clockwise. We also assume that when
the agitator begins rotating, the vortex blob develops instantly and then particles
are stirred. On the other hand, when the agitator stops, the vortex blob disappears
and the particles also stop immediately.

Let (pi, ¢;) represent the position of the agitator P; for i« = 1,2. Then, the vortex
blob generated by P; induces the following velocity field (u;, v;):

I Y—q
i\ Ly = — 3= ) 1
uil®,9) 2m (z —pi)* + (y — @1)* + 62 W
Fi T — P;
vi(z,y) P 2)

2m (@ — pi)? + (y — @)% + 0%

in which T';, which is either 1 or —1, represents the strength of the vortex blob
and the positive § is the regularization parameter of the vortex method. When § is
exactly zero, the flow (1) and (2) corresponds to the one induced by a vortex point
in the incompressible and inviscid fluid, which diverges as (z,y) tends to (p;, ¢;). In
order to avoid the singularity, introducing § # 0 gives a regularized velocity field.
The regularization method is often used in the numerical studies of the inviscid and
incompressible flows [12]. Mathematically speaking, it is shown that for sufficiently
small 4, the vortex method gives an accurate approximation for the inviscid flows



as long as they are smooth [6]. Another numerical example shows that this method
also effectively approximates the incompressible Navier-Stokes equations with small
viscosity [13].

Here, let us explain the specifications of the mixing device used in the paper.
The two agitators P, and P» are located at (—%, O) and (%, 0) respectively. Once the
agitator Pj is switched on, it continues to rotate until the particles at the positions
(—1,0) and (0,0) are interchanged mutually. Hence, it follows from (1) and (2) that
the duration of the rotation P; is given by

1
T=2r2(624=).
7r(5+4>

In the same way, the vortex blob generated by P, interchanges the particles at (0, 0)
and (1,0) by rotating for the same time period T. Moreover, we operate the two
agitators exclusively. That is to say, when the agitator P; is active, the agitator P
must be inactive and vice versa.

We are going to observe numerically how particles spread when the vortex blobs
generated by P; and P, are blinking periodically. Then the ordinary differential
equations for NV particles are given as follows,

dditp = u1($pv yp)Xl(t) + uQ(xp, yp)XQ(t); (3)
% U1 (fE;Dv yp)Xl (t) + U9 (xp, yp)X2 (t), (4)

for 1 < p < N, in which the function x;(t) is defined by

() = 1 if P; is active,
Xil) =9 0 if P; is inactive.

In what follows, for the sake of easy description of the mixing process, when the
agitator P; rotates counterclockwise for the time period T, the operation is denoted
by p(i). On the contrary, when P; stirs the particle clockwise, it is symbolized by

The forth-order Runge-Kutta method is used for the numerical integration of
(3) and (4). The step size of the temporal discretization is At = 0.001 x T'. At the
initial moment, the particles distribute uniformly in the segment [—2, 2], which are
represented by

2,(0) = —2.0 + 4.0%, yp(0) =0, for1<p<N. (5)

The number of the particles N equals 20000.

3 Chaotic advection by the blinking vortex blobs

First, we observe the mixing of the particles when we repeat the operation p(1)n(2).
In Figure 1, we plot the distribution of the particles every two operations of p(1)n(2),
ie. att = kT for k = 4,8,---,32. The regularization parameter § is 0.6. The
symbols O, O and A in the figure represent the positions (—1,0), (0,0) and (1,0)
respectively.

Initially, the particles distribute uniformly in the segment [—2,2]. When the
operation p(1)n(2) is done twice, there appear streaks of the particles between O
and A over O. After four operations, while the number of the streaks increases, the
right tip of the outermost streak approaches O passing the right-hand side of A.
At the sixth operation, there emerge other streaks of particles going from O to ()



by passing the right-hand side of /A and above 0. As the number of the operations
increases, the two streaks fill in a region densely and the particles finally spread
uniformly in the region.

We observe the dynamics of the particles in the mixing process. Figure 2 shows
the orbits of the ten particles (z;, y;) for i = 0,2000, 4000, - - - , 18000 when we repeat
the operation p(1)n(2) many times. The orbits consist of a disorderly mixing region
in the neighborhood of the vortex blobs and many return orbits connecting between
the top and the bottom of the disorder region. In order to see how the particles
spread in detail, we plot the evolution of z-coordinates of the sample particles
(z4,y,) for © = 406, 407, 10104, 10105, 19896 and 19897 for the first 30 operations in
Figure 3. Initially, the distances between the adjoining two particles are sufficiently
small, ie. & = 5.0 x 107° due to (5), and the orbits of the two particles are
quite close up to the 10th operation. However, from the 10th through the 20th
operations, during which all the sample particles exist in the disorder region, their
orbits separate considerably and fluctuate disorderly. This indicates that the mixing
process is sensitive to the initial positions of the particles. In this sense, the particles
are stirred chaotically in the disorder region. After the 20th operation, some of them
go out of the chaotic mixing region and then move along the return orbits, while
the others remain in the chaotic region. Since the particles going out of the chaotic
region eventually return to the chaotic region along the return orbits, they are
stirred chaotically again. In other words, every single particle shows intermittent
chaotic behavior. We note that the intermittent dynamics guarantees that all the
particles in R? are stirred chaotically, since any particle, however far it is from the
vortex blobs, necessarily enters the chaotic region after moving along the return
orbits.

Now, we are going to describe the structure of the particles embedded inside
the chaotic mixing region observed in Figure 1. See Figure 4 for the schematic
reference:

(1) With the first operation, the initial line segment of the particles is stretched
and folded counterclockwise, and as a result it forms a streak going from () to A
and then back () over O, which we call a “()-streak”. The next operation maps
the (O-streak outward and generates a new ()-streak inside the old ()-streak. It
indicates that the operation expands the ()-streaks outward, while generating a new
(O-streak inside them. See the distributions at the second and the fourth operations
in Figure 1 for comparison.

(2) The right tip of the outermost ()-streak approaches O passing the right-hand
side of A. Then, it is stretched and folded clockwise and forms another streak of
particles, which goes from O to () by passing the right-hand side of A and over O
and returns on its way back to O. We refer to the new streak as the “O-streak”.
The O-streaks are also expanded outward by the operation with the generation of
a new O-streak in the same way as the ()-streaks.

(3) As the number of the operations increases, the O-streaks penetrate alter-
nately between the ()-streaks. The left tips of the both streaks in the neighbor-
hood of () are caught in the innermost ()-streak as we see in the distributions of the
10th and 12th operations in Figure 1. On the other hand, the right tips of the both
streaks concentrate in 0. Thus, the repetition of the operation results in formation
of the alternate stripe structure of the ()-streaks and the O-streaks, which is like a
horseshoe structure.

Next, we show the mixing of the particles by repeating the operation p(1)n(2) for
0 =0.2 and § = 0.4 in Figure 5. Since the flow tends to be inviscid as § decreases,
the velocity field in the neighborhood of the vortex blobs is getting less regular,
which results in the strong stirring around the vortex blobs. However, the chaotic
mixing is finally observed after the formation of the horseshoe-like structure. On
the other hand, the chaotic region develops more quickly as § — 0, since the less
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Figure 1: Mixing of the particles when the operation p(1)n(2) is repeated.

regularization parameter ¢ is 0.6.
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Figure 2: The orbits of the ten particles, (x;,y;) for i = 0,200,400, - - - , 1800 stirred
by the operation p(1)n(2) many times. There exist a disorderly mixing region in
the neighborhood of the vortex blobs and many orbits that depart and return again
to the region.

Position of the particles Xp

Number of operations

Figure 3: Evolution of the z-coordinates of the sample particles. The orbits of the
two adjoining particles separate from each other after the 10th operations, although
the initial distance between them is sufficiently small.
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Figure 4: Horseshoe-like structure embedded in the chaotic region.

viscous flow stirs the particles more strongly.

Finally, we show the particle mixing by the other operation p(1)p(2) for 6 = 0.6
in Figure 6. The initial straight segment of the particles winds around the vortex
blobs as the number of the operations increases. No chaotic region as we have
observed in Figure 1 appears, though there exists a small disorder region in the
neighborhood of the vortex blobs. Figure 7 shows the orbits of the ten particles
(x4,y;) for i = 0,200,400, ---,18000 when we repeat the operation p(1)p(2) many
times. There certainly exists a small disorderly mixing region in the neighborhoods
of the vortex blobs. However, the mixing region contains the island structures and
the particles spread non-uniformly in the region. On the other hand, the parti-
cles outside the mixing region follow the rotational orbits around the region, and
consequently they never enter the mixing region, which indicates that all the parti-
cles in R? are hardly mixed chaotically unlike the case for the operation p(1)n(2).
Therefore, the operations p(1)n(2) stirs the particles more efficiently than the oper-
ation p(1)p(2) does, although the same amount of energy for the operations of the
agitators is required.

4 Braid dynamics and topological mixing

4.1 Pseudo-Anosov braids and topological mixing

To understand the difference between the particle mixings by two operations p(1)n(2)
and p(1)p(2), we apply the T-N theory. We first define homeomorphisms F},;) and
Foay ¢ R? — R? for i = 1,2 as follows: Take a set of three points A = {ay,az,a3}
that lies in the z-axis in the plane, say a1, az, a3 from left to right. Let Fj¢; (resp.
F,(:)) be a homeomorphism satisfying the following conditions:



(a) delta=0.2 (b) delta=0.4
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Figure 5: Mixing of the particles when the operation p(1)n(2) is carried out repeat-
edly. The regularization parameters are (a) 6 = 0.2 and (b) § = 0.4.
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Figure 6: Mixing of the particles when we repeat the operation p(1)p(2).

regularization parameter ¢ is 0.6.
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Figure 7: The orbits of the ten mixing particles, (z;,y;) for ¢ = 0,200, 400, - - - , 1800
due to the operation p(1)p(2). While there exists a disorderly mixing region in the
neighborhood of the vortex blobs, the particles outside the disorder region follow
the rotational orbits.

e Two points a; and a;41 are interchanged counterclockwise under Fj,;
(resp. clockwise under F,(;)) as in Figure 8, and
e the other point in A is fixed under Fy,;y (resp. F,)).

Since A is invariant under Fj,;y and F),;), they are thought as the homeomorphisms
on the 3-punctured plane Rz = R?\ A.

In general, for any homeomorphism f : R? — R? with a finite invariant set P,
the isotopy class of f on R?\ P is specified by a braid on R?. We say that the braid
is periodic, pA and reducible, if the isotopy class of flg2\p : R? \ P — R?\ P is
periodic, pA and reducible respectively. Accordingly, since the set A is a period 3
orbit for Fj,1) o F,(2) and Fy(q) o Fj,(2), the homeomorphisms on R3 are specified by
some 3-braids on R?; Let o1 and o2 be the Artin’s generators of the 3-braid group
on R? as in Figure 9. Then the isotopy class of Fyuiy (resp. Fy(;)) on R3 is specified
by the 3-braid o; (resp. o; 1), since F,(;) interchanges a; and a;y1 counterclockwise
(resp. clockwise). Thus the 3-braids o104 L and o109 specify the isotopy classes of
Fy1) o Fyy2) and Fj(1) o Fj,2) on R respectively. Note that the braids 0102_1 and
0102 are pA and periodic respectively.

On the other hand, the operations p(7) and n(4) also determine homeomorphisms
on R?, say ﬁp(i) and fn(i). Now, we consider a relation between the maps F,;

and F),(;), and the maps Fj,; and ﬁn(i). Let by, bs and b3 denote the positions
(=1,0),(0,0) and (1,0) respectively. We compare the motion of the set of three
points B = {b1,ba, b3} under Fjqy with that of the set A under F,;). The map
ﬁp(l) interchanges b; and by counterclockwise in the same way as Fo) does. Hence,
Fy1y(b1) = ba and F1)(b2) = b1, and the~set {b1,b2} gives an exact 2-braid, see
Figure 10. A difference between Fj,(;) and Fj,(1) is the motions of a3z and b3. While
az is fixed under F(1), the point b3 moves slightly due to ﬁp(l) as we show in

11



Figure 9: The Artin’s generators oy [left] and o9 [right].

Figure 10. Specifically, ﬁpu) advects bs counterclockwise around the agitator P; at
(—2,0) by the angle 6(6),

1
0(6) = —v1(bs) x T,
r
in which r = % is the distance between the agitator P; and bs. For example,

6(0.6) ~ 0.237. It means that the set B is not invariant under the homeomorphisms

Fyiy and F, ;. Therefore, the homeomorphisms do not give exact (2 + 1)-braids.
However, since 6(d) is insignificant for small 0, the motion of the set A under F)

approximates that of B under F,(;) topologically as in Figure 10. Hence, we assign

the 3-braids o; and o, ! approximately to F,) and ﬁn(i) respectively.

bl.\ 7
/

Time

Figure 10: The motion of B

Thus the pA braid o 051 is topologically assigned to ﬁp(l) Oﬁn(g). We now recall
the chaotic region observed in Figure 1 and Figure 5 with a horseshoe-like structure

12



(see also Figure 4) that fills densely in the neighborhood of the vortex blobs. It is
remarkable that the strips structure of streaks in the region resembles the unstable
manifold of the pA map on the 3-punctured plane, and that the shape of the chaotic
region is also similar to the chaotic region shown by the laboratory experiment [4]
and the numerical experiments [8, 16], which are examples of the topological chaos
forced by the pA braid oi05 L. Furthermore, even if the initial particles distribute
in the different positions, the similar horseshoe-like structure of streaks is observed
as the number of the operations increases, since the particles eventually enter the
chaotic mixing region after moving along the return orbits.

On the other hand, in the mixing process due to the operation p(1)p(2), there
is no horseshoe structure of streaks in the neighborhood of the vortex blobs, and
the particles spread non-uniformly. The small disorderly mixing region observed in
Figure 6 occurred by the homoclinic chaos in the neighborhood of the vortex blobs.
In theory, the topological chaos is embedded in the homoclinic chaos somewhere
in the region [9]. However, since the cause of the topological chaos is unrelated to
the braid assigned for the operation, the region where the topological chaos exists
occupies a small position in the whole chaotic region.

Finally, we make a conjecture which connects the assigned braid for the opera-
tion and the topological chaos; The topologically assigned braid for the operation
determines the property of the topological chaos in the neighborhood of the vortex
blobs; If the assigned braid is pA, then the global chaotic region caused by the topo-
logical chaos occurs in the neighborhood of the vortex blobs. The assigned braid
contributes to the occurrence of the global chaotic region. On the other hand, if the
assigned braid is periodic, then no global chaotic region caused by the topological
chaos occurs in the neighborhood of the vortex blobs. A local chaotic region might
occur, but the assigned braid make no contribution to that chaotic region.

4.2 Supporting numerical evidences for the conjecture
4.2.1 Particle mixing by the other operations

Our conjecture given in the previous section is based on the observation of the
particle mixing by the two operations p(1)n(2) and p(1)p(2). In order to see it is
not the specific to the two cases, we show in Figure 11 the particle mixings by the
operations p(1)p(1)n(2)n(2) and p(1)p(1)p(2), which are assigned approximately to
the pA braid o10105 10; I and the periodic braid oi0109 respectively. While the
similar expanding horseshoe-like structure appears in the former case, there emerges
just a local chaotic region in the latter case. This indicates that the complexity
forced by the other pA braid corresponding to the operator p(1)p(1)n(2)n(2) is also
embedded in the mixing process, which support the conjecture.

4.2.2 Expansion constant and stretching rate

There is an important quantity to characterize the chaotic region forced by the pA
map; In the horseshoe-like region generated by the topological chaos, the pA map
stretches uniformly in one direction at the rate A > 1 and contracts uniformly in
another direction at the rate 1/A for every point. The number A > 1 is called
the expansion constant. This constant gives how two points that are very close to
each other initially are stretched by the pA map. To obtain the expansion constant
for the pA maps, the Bestivina-Handel algorithm [3] or the software “Train tracks
of surface homeomorphisms” [10] is available, according to which the expansion
constant associated with the 3-braid 01051 is Ay = %(3 +/5) =2.618---.

Here, we show that two particles with small distance are stretched at the rate
more than A, which we call the stretching rate. The stretching rate of the chaotic

13
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Figure 11: Particle mixings by the operations (a) p(1)p(1)n(2)n(2) and (b)
p(1)p(1)p(2). The regularization parameter ¢ is 0.6.
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Figure 12: Stretching rate for the particles in the innermost ()-streak by the oper-
ation p(1)n(2).

mixing region is computed as follows: We take a very short segment [(«) in the
neighborhood of (), which is parametrized by 0 < a < 1, so that the homeo-
morphism F' = Fj1) o F,3) maps the line segment I(a) into the innermost O-
streak. Then, we discretize the parameter o by large M points so that |l(a;t1) —
l(oi)|(= &) < 1.0 x 107 for a; = 7;. Thus we calculate the stretching rate by
|F(l(cig1)) — F(I(cw))|/€i. Figure 12 shows the stretching rate for various 6, which
indicates that the stretching rate is greater than the theoretically estimated expan-
sion constant A;. This means that the chaotic mixing region by p(1)n(2) and the
topological chaotic mixing region forced by o105 1 are similar quantitatively.

We compute the stretching rate for another process p(1)p(1)n(2)n(2), whose
corresponding braid o10105 o5 ' is pA. The expansion constant for oyoy0y 'oy ' is
given by Ay = 3 4+ 2v/2 = 5.828 .- -. Figure 13 shows the stretching rate for various
0. The particles in the streak are stretched at the rate greater than \s.

4.2.3 Excessive and incomplete mixing

In the present imaginary mixing device, we have two unrealistic assumptions: First,
the vortex blobs are generated as soon as the agitator begins rotating. Second, the
particles stop immediately when the agitator stops. However, in reality, the mixing
time could be longer or shorter, because the particles have inertia or it takes a
moment for the vortex blob to be generated by the agitator.

In order to see that the chaotic mixing is generically observed in more practical
situations, we compute the particle mixing by the agitators with excessive mixing
time T > T and incomplete mixing time T, < T'. Figure 14 shows that the particle
mixings by the excessive p(1)n(2) for 2= = 1.2 and by the incomplete p(1)n(2) for
% = 0.8. The similar chaotic horseshoe-like regions like in Figure 1 are observed
in both cases.

Since the pseudo-Anosov maps are essentially the same as the Anosov diffeo-
morophisms that are structurally stable, if the topological chaos for p(1)n(2) really
appears in the neighborhood of the vortex blobs, then the similar chaotic region to
that for p(1)n(2) should be observed under the perturbation of the map. The above
numerical experiments show that the strip structure of streaks of the chaotic region

is preserved under the the perturbation of the map in terms of the mixing time.
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Figure 14: (a) Particle mixing by the excessive operation p(1)n(2). (b) Particle
mixing by the incomplete operation p(1)n(2).
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5 Conclusion

We have investigated numerically the particle mixing when the two agitators are
operated alternatively. Each agitator generates the vortex blob, which is the regu-
larized vortex point, and it stirs the passive particles. Since the particles mixed by
the blinking vortex model show the chaotic behavior due to the homoclinic chaos,
it is mathematically assured that the topological chaos is embedded in the chaotic
mixing region. The conjecture of the present study is that the property of the
topological chaos embedded in the neighborhood of the vortex blobs is determined
by the Thurston-Nielsen type (periodic, pA, reducible) of the braid assigned to the
operation; For the operation p(1)n(2) whose assigned braid is pA, a horseshoe-like
structure forced by the pA braid dominates the chaotic region in the neighborhood
of the vortex blobs. We have shown some numerical evidences implying that the
topological chaos appears dominantly in the neighborhood of the vortex blobs; In
Section 4.2.2, any two points in the chaotic region are stretched at the rate more
than the expansion constant for the assigned pA braid. In Section 4.2.3, the chaotic
region with a horseshoe-like structure is topologically preserved under the pertur-
bation of the map.

Since the chaotic region is connected by the dipole-like return orbits, the struc-
ture allows all the particles in the whole plane to move chaotically. Hence, the
present study indicates that with the help of the T-N theory, we are able to con-
struct the blinking vortex model that makes all the particles in the whole plane mix
efficiently and globally.

On the other hand, for the operation p(1)p(2) whose assigned braid is periodic,
the non-uniform chaotic mixing region with the island structures appears in the
neighborhood of the vortex blobs, which is surrounded by the laminar rotational
orbits. Since the chaotic region is bounded by the rotational orbits, it is hard for
all the particles to spread in the plane. In theory, since the p(1)p(2) operation also
induces the chaotic advevtion due to the homoclinic chaos, there exists a chaotic
invariant set somewhere in the chaotic region forced by the pA braid, which is not
associated with the operation of the blinking vortices. However, the size of the
invariant is so small that it hardly contribute to the global chaotic mixing of the
particles.

Let us finally remark that the blinking vortex model studied by Aref [1] and
Ottino [14] corresponds to the operations assigned to the periodic braid. Hence,
the topological chaos is not dominant in their mixing process. Consequently, the
particles spread non-uniformly and the chaotic advection occurs on the restricted
region in the neighborhood of the blinking vortices. Therefore, all the particles in
the plane are hardly mixed chaotically for the blinking vortex model device by Aref
and Ottino.
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