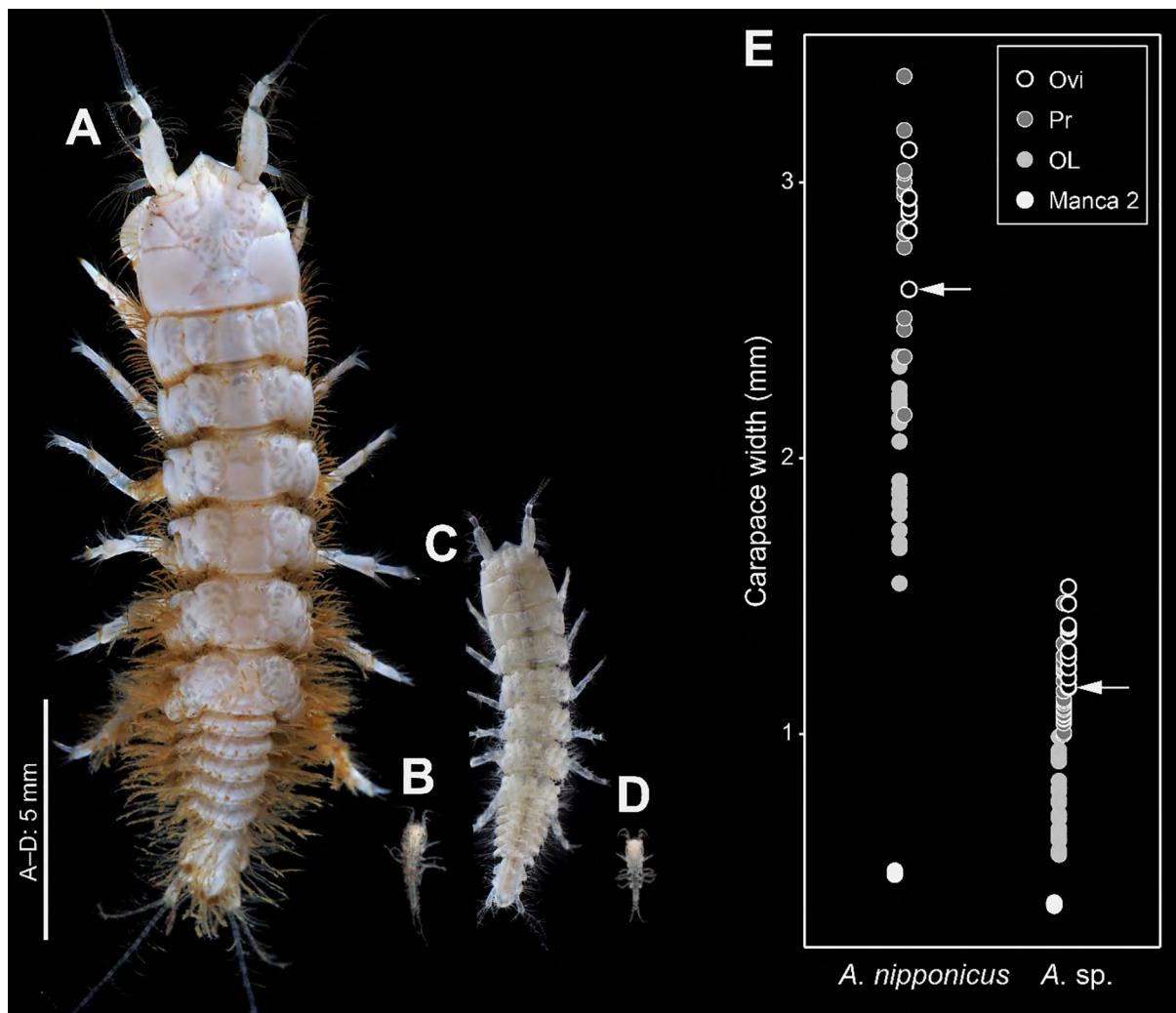


Title	A smaller species releases proportionally larger juveniles in Apseudes (Crustacea: Peracarida: Tanaidacea)
Author(s)	KAKUI, Keiichi; HIRUTA, Chizue
Citation	Cahiers de Biologie Marine, 65(1), 35-37 https://doi.org/10.21411/CBM.A.F7E539FB
Issue Date	2024-01-26
Doc URL	https://hdl.handle.net/2115/97059
Type	journal article
File Information	2024_Kakui_Hiruta_Apseudes_juveniles.pdf

SHORT NOTE

A smaller species releases proportionally larger juveniles in *Apseudes* (Crustacea: Peracarida: Tanaidacea)


Keiichi KAKUI and Chizue HIRUTA

Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
Corresponding author: kakui@eis.hokudai.ac.jp

Abstract: We compared the body size (carapace width, CW) of the first free-living instar individuals, or mancae 2, and of the smallest ovigerous individuals, between two simultaneously hermaphroditic tanaidacean species, *Apseudes nipponicus* Shiino, 1937 and *Apseudes* sp. The former species is 2.2 times larger, with a CW of 2.61 mm in the smallest ovigerous individual, compared to 1.17 mm in the latter. Average CWs of manca 2 individuals were 0.51 mm (*A. nipponicus*, n = 3, 0.50-0.51 mm) and 0.38 mm (*Apseudes* sp.: n = 9, 0.38-0.39 mm), meaning that *A. nipponicus* mancae 2 were 20% as large as the smallest ovigerous individuals, whereas those of *Apseudes* sp. were 32% as large. The proportionally larger juveniles in the smaller species are consistent with the progenetic hypothesis that *Apseudes* sp. is achieving earlier maturation as females.

Résumé : Une plus petite espèce libère proportionnellement des juvéniles plus grands dans le genre *Apseudes* (Crustacea : Peracarida : Tanaidacea). Nous avons comparé la taille (largeur de la carapace, CW) du premier stade libre, manca 2, ainsi que des plus petits individus ovigères, de deux espèces de tanaïdacés hermaphrodites simultanées, *Apseudes nipponicus* Shiino, 1937 et *Apseudes* sp. La première espèce est 2,2 fois plus grande, d'une CW de 2,61 mm pour le plus petit individu ovigère, que celui de la deuxième espèce, d'une CW de 1,17 mm. La moyenne de CW des individus manca 2 était respectivement de 0,51 mm (*A. nipponicus*, n = 3, 0,50-0,51 mm) et 0,38 mm (*Apseudes* sp., n = 9, 0,38-0,39 mm), soit 20% de celle du plus petit individu ovigère pour la première espèce, et 32% pour la seconde espèce. Les juvéniles proportionnellement plus grands chez la petite espèce sont cohérents avec l'hypothèse progénétique qu'*Apseudes* sp. termine de façon précoce sa maturation femelle.

Keywords: Apseudidae • Manca • Life history • Malacostraca • Simultaneous hermaphrodite

Figure 1. *Apseudes nipponicus* & *Apseudes* sp. Habitus and the relationship between carapace width and developmental stage. **A & B.** *Apseudes nipponicus*, postmanca individual (CW = 3.38 mm) (A) and manca 2 (B). **C & D.** *Apseudes* sp., postmanca individual (CW = 1.52 mm) (C) and manca 2 (D). **E.** Relationship between carapace width and developmental stage in the two species. OL, oostegite lacking; Ovi, ovigerous; Pr, preparatory. Arrows, the smallest ovigerous individual observed for each species.

Large size differences among congeneric species are common in Peracarida (Crustacea: Malacostraca), such as in the genera *Neognathophausia* in Lophogastrida (Pequegnat, 1965), *Bathynomus* in Isopoda (Lowry & Dempsey, 2006), and *Apseudes* in Tanaidacea. In *Apseudes*, *A. nipponicus* Shiino, 1937 is relatively large (Fig. 1A), with a body length (BL) of around 12 mm at first spawning; in contrast, *Apseudes* sp. *sensu* Kakui & Hiruta (2013) (hereafter *Apseudes* sp.) is relatively small (Fig. 1C), with a BL of around 5 mm at first spawning (Kakui & Hiruta, 2023). Both species are simultaneous hermaphrodites (Kakui & Hiruta, 2013 & 2023).

Upon finding that masculinization in chelipeds was slighter in *Apseudes* sp. (the smaller species) than in *A. nipponicus* (the larger species), Kakui & Hiruta (2023) suggested that *Apseudes* sp. might be progenetic, achieving earlier maturation as females by reducing resource allocation to male secondary traits and growth. This raised the further question whether the large size difference between the species is evident earlier in ontogeny.

To address this question, we compared the body size of manca-2 individuals between *A. nipponicus* and *Apseudes* sp. Manca 2 is the stage at which individuals are released from the female brood pouch (i.e., the first free-living instar stage), characterized

by lacking pleopods and any traces of pereopod 6, and having pereonite 6 similar in size to a pleonite (Larsen, 2003). As a proxy for body size, we measured the carapace width (CW) of the manca 2 individuals, because accurate measurements of BL are difficult due to deformation or lateral curvature of the body. CW correlates well with BL, and the slope of the regression line between BL and CW is the same in the two species (Kakui & Hiruta, 2023). For *A. nipponicus*, three captive-bred mancae 2 were measured; these were descendants of individuals collected in 2015 from an experimental aquarium at the Shimoda Marine Research Center, University of Tsukuba (see Kakui et al., 2017) and had been fixed and preserved in 70% ethanol in 2015. For *Apseudes* sp., nine captive-bred mancae 2 were measured; these were descendants of individuals collected in 2009 and 2010 in the Port of Nagoya Public Aquarium, Japan (see Kakui & Hiruta, 2013) and were fixed and preserved in 99% ethanol on 7 June 2023. For both species, we used data from Kakui & Hiruta (2023) on CW in postmanca developmental stages (OL, oostegite lacking; Pr, preparatory; Ovi, ovigerous).

Body size is larger in *A. nipponicus* than in *Apseudes* sp. at both the manca 2 and ovigerous stages, though the size difference is greater at the ovigerous stage. Average CWs for mancae 2 were 0.51 mm (0.50-0.51 mm, n = 3) for *A. nipponicus* and 0.38 mm (0.38-0.39 mm, n = 9) for *Apseudes* sp. (Fig. 1E); the value in the former was thus about 1.3 times that in the latter. The CW of the smallest ovigerous individual was 2.61 mm in *A. nipponicus* and 1.17 mm in *Apseudes* sp. (Kakui & Hiruta, 2023); CW in the former was about 2.2 times that in the latter. The *A. nipponicus* manca 2 is 20% the size of the smallest ovigerous stage, whereas the *Apseudes* sp. manca 2 is 32%. Compared to *A. nipponicus*, *Apseudes* sp. releases relatively large mancae 2.

Relatively few studies have provided size data on both mancae 2 and the smallest ovigerous individuals for species in Apseudidae (e.g., Schmidt et al., 2002; Esquete et al., 2012; Kakui et al., 2019). We are unaware of any previous comparison of the size difference between the manca 2 stage and the smallest ovigerous individuals among congeneric apseudid species. Our observation of a smaller species releasing proportionally larger juveniles, however, should be treated with caution, as our data are limited and knowledge on reproduction and life cycles among apseudids remains insufficient. Many abiotic/biotic factors, such as temperature, age,

intermolt lengths, or growth increment per molt, may affect the size of eggs or hatchlings and the length of the period from the juvenile to ovigerous states. In any case, producing relatively large mancae 2 is consistent with the hypothesis that *Apseudes* sp. is progenetic.

Acknowledgements

We thank Shin Tochinai for providing breeding facilities and Matthew H. Dick for reviewing the manuscript and editing our English. This study was supported by the Japan Society for the Promotion of Science (JSPS) under KAKENHI grants JP19K06800 to KK and JP20J40122 to CH.

References

Esquete P., Bamber R.N., Moreira J. & Troncoso J.S. 2012. Redescription and postmarsupial development of *Apseudopsis latreillii* (Crustacea: Tanaidacea). *Journal of the Marine Biological Association of the United Kingdom*, 92: 1023-1041. Doi: [10.1017/S0025315411002086](https://doi.org/10.1017/S0025315411002086)

Kakui K. & Hiruta C. 2013. Selfing in a malacostracan crustacean: why a tanaidacean but not decapods. *Naturwissenschaften*, 100: 891-894. Doi: [10.1007/s00114-013-1079-5](https://doi.org/10.1007/s00114-013-1079-5)

Kakui K., Suzuki A., Nakano H. & Kohtsuka H. 2017. Habitat of a tanaidacean *Apseudes nipponicus* Shiino, 1937. *Bulletin of the Kitakyushu Museum of Natural History and Human History Series A (Natural History)*, 15: 1-3. Doi: [10.34522/kmnh.15.0_1](https://doi.org/10.34522/kmnh.15.0_1)

Kakui K., Hiruta C. & Uyeno D. 2019. Sexual system in the tanaidacean *Falsapseudes bowmani* (Crustacea: Malacostraca: Peracarida). *Invertebrate Biology*, 138: e12257. Doi: [10.1111/ivb.12257](https://doi.org/10.1111/ivb.12257)

Kakui K. & Hiruta C. 2023. Differential masculinization of the chelipeds in two simultaneously hermaphroditic *Apseudes* tanaidaceans (Crustacea: Malacostraca). *Zoologischer Anzeiger*, 305: 23-27. Doi: [10.1016/j.jcz.2023.05.004](https://doi.org/10.1016/j.jcz.2023.05.004)

Larsen K. 2003. Proposed new standardized anatomical terminology for the Tanaidacea (Peracarida). *Journal of Crustacean Biology*, 23: 644-661. Doi: [10.1651/C-2363](https://doi.org/10.1651/C-2363)

Lowry J.K. & Dempsey K. 2006. The giant deep-sea scavenger genus *Bathynomus* (Crustacea, Isopoda, Cirolanidae) in the Indo-West Pacific. *Mémoires du Muséum National d'Histoire Naturelle*, 193: 163-192.

Pequegnat L.H. 1965. The bathypelagic mysid *Gnathophausia* (Crustacea) and its distribution in the Eastern Pacific Ocean. *Pacific Science*, 19: 399-421.

Schmidt A., Siegel V. & Brandt A. 2002. Postembryonic development of *Apseudes heroae* and *Allotanais hirsutus* (Tanaidacea, Crustacea) in Magellanic and sub-Antarctic. *Antarctic Science*, 14: 201-211. Doi: [10.1017/S0954102002000019](https://doi.org/10.1017/S0954102002000019)

Shiino S.M. 1937. On *Apseudes nipponicus* n. sp. (Crustacea: Tanaidacea). *Annotationes Zoologicae Japonenses*, 16: 53-62.