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Analytic decomposition of interference
in light scattering via density expansion.
Calculations of the scattering coefficients
using the electromagnetic theory.

Small particle size case enhances the
multiple interference in the coefficients.
This decomposition approach unveils hid-
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the effective attraction between parti-
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ABSTRACT

In dense colloidal suspensions, far-field interference between electric fields scattered by particles significantly
influences light scattering properties. Previous studies using dependent scattering theory (DST), based on
the first-order solution of the Foldy-Lax equations, have shown that destructive interference affects the
scattering properties via the static structure factor. Meanwhile, the contributions of multiple interference and
the relationship between interference and particle correlation remain unclear. We aim to clarify the interference
effects and their relationship using a density expansion approach, which allows us to decompose the multiple
interference contributions. We calculated the two scattering coefficients using the DST and the expansions
with hard-sphere interaction in the volume fraction range up to 25% and the optical wavelength range
of 600-1000 nm. Our numerical calculations showed that for particle diameters larger than approximately
300 nm, the second-order expansion for the reduced scattering coefficient agrees well with the DST results.
This result reflects the destructive interference induced by the excluded volume between particles. For the
scattering coefficient, the third-order expansion agrees with the DST results in the larger-diameter region. This
agreement reveals a hidden constructive-interference contribution driven by an effective attractive interaction,
even in the absence of any direct attractive force. For smaller diameters, higher-order expansions are necessary
to accurately reproduce the DST results, as multiple interference contributions are involved. For the scattering
coefficient, odd-order terms of expansion correspond to destructive interference, while even-order terms
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correspond to constructive interference. In contrast, the correspondence in the reduced scattering coefficient
is more complex and depends on both particle diameter and wavelength. Our findings provide fundamental
knowledge for developing nanotechnology to evaluate colloidal particle properties non-destructively using

scattered light.

1. Introduction

Colloidal suspensions are essential and found in various nano- and
micro-scale engineering and scientific fields [1-3], such as slurries in
chemical engineering, colloidal photocatalysts in environmental reme-
diation, and milk in food science. High concentrations are significantly
demanded in various industries, such as for improving product quality
and reducing transport costs through the weight reduction of suspen-
sions [4,5]. High concentrations are also crucial for physicochemical
phenomena, including glass transition and its quasi-universality [6,7].

Light scattering techniques have been extensively developed to re-
trieve the physicochemical properties (i.e., viscosity) [8] and colloidal
particle properties (i.e., nano- and micro-particle size, and agglomera-
tion degree) [9-12]. In a light-scattering process, the direction of the
scattered light frequently changes due to colloidal particles (scatter-
ers). Meanwhile, most developed techniques require sample dilution,
where the volume fraction is less than approximately 5%. Photon
density wave spectroscopy can potentially retrieve the properties with-
out dilution [13]. To further develop the optical method, quantitative
understanding of light scattering in dense suspensions needs to be
clarified [14].

Light scattering properties, one of the physicochemical properties,
quantify the strength of light scattering. For example, the scattering
coefficient represents the inverse mean free path of photons [15].
Experimental and theoretical studies have extensively examined the de-
pendence of the scattering properties on volume fraction. The scattering
coefficient shows a linear dependence in the dilute region up to approx-
imately 5% of the volume fraction. This linear trend indicates that there
is no interference between the scattered electric fields from particles,
known as independent scattering [9,10,16]. Meanwhile, in the dense
regime, the rate of increase is reduced, resulting in a curvilinear depen-
dence on the volume fraction. This reduction suggests an enhancement
of the destructive interference at far field between the scattered fields,
known as the interference effect [13,17,18]. However, constructive
interference can also occur, as in Young’s double-slit experiment. Thus,
it is plausible that the observed interference effect results from a
combination of constructive and destructive contributions. However,
their quantitative contributions remain unclear.

The dependent scattering theory (DST) nicely describes the mea-
surement data of the scattering properties in dense suspensions up to
approximately 25% [13,17,18]. This electromagnetic theory is based
on the first-order solution of the Foldy-Lax equations, which provide
a multiple-scattering expansion of Maxwell’s equations [19,20]. The
DST formulates the scattering coefficient as the integral of the product
of the single-particle phase function and the static structure factor
(SSF) over the scattering angle. The Mie theory provides the phase
function, where the particle diameter is comparable to the wavelength,
as a summation of special functions [21]. The SSF provides destructive
and constructive interference contributions [13,18,22,23] and can be
measured by neutron scattering techniques [24,25]. However, these
interference contributions vary in a complicated manner with the scat-
tering angle, wavelength, particle size, and other factors. Moreover,
the SSF reflects the local particle configuration and a pair correlation
between particles induced by particle interaction, such as the hard-
sphere repulsion [26,27]. Quantitative understanding is hindered by
both the complicated form of the phase function and the variation in
the SSF.

We aim to clarify the two interference contributions on the light
scattering properties in dense suspensions by a density expansion ap-
proach. The expansion approach was initially developed in physical

chemistry to study the particle correlations using the radial distribution
function (RDF) [28-31]. The RDF is related to the SSF as its inverse
Fourier transform. Each order of the volume fraction (number density)
links to the particle correlation, such as the excluded volume and
effective attractive force. Despite its widespread use, to the best of
our knowledge, the volume-fraction expansion approach has not been
applied to the decomposition analysis of light-scattering properties,
integrated over scattering angles. Thus, we also aim to clarify the re-
lationship between interference and particle correlation. We calculated
the scattering properties using the DST over a wide range of particle di-
ameters (100-800 nm) and optical wavelengths (600-1000 nm). Then,
we expanded the scattering properties in order of the volume fraction
and examined the interference contributions and their relationship
quantitatively.

2. Theory and model
2.1. Modeling colloidal suspensions

Among the light scattering properties, we mainly considered the
scattering and reduced scattering coefficients, u; and u!. The two
coefficients characterize the scattering events at unit length in the
ballistic and diffusive regimes (small and large scales), respectively, as
shown in Fig. 1(a). Each diffusion process, characterized by u/, involves
multiple ballistic scattering events characterized by ;.

We model the colloidal suspension as a system of spherical particles
dispersed in a continuous solvent medium (water), as shown in Fig.
1(b). We focus on a monodisperse system with a particle diameter
d. Examples of the actual systems are silica and polystyrene parti-
cles [18,32-34], whose size distributions are sufficiently sharp to hold
the monodisperse approximation [35]. For simplicity, we assume that
no agglomeration occurs in the system.

We carefully use the terms “independent” scattering and “depen-
dent” scattering throughout this paper. Although their ambiguity has
been noted [36], these terms are widely used in optics and engineering
research. The DST used in this study is based on the first-order solution
of the Foldy-Lax equations (FLEs), which provide a multiple-scattering
expansion of Maxwell’s equations [19,20].

2.2. Dependent scattering theory (DST)

The DST provides the formulations of the two scattering coefficients
(incoherent properties) as integrals with respect to the scattering angle
0 [17,18].

2
Hs psT(d) = 27rn0¢7S‘M,-e(d)/ dOsin 0Py, (0,d)S(0,d), (€D)]
0
2
M;,DST(d) = 27m0637M,-e(d)/ dfsin (1 — cos Q)PM[e(H,d)S(H,d). 2)
0

Here, the number density n, is given as 5/v,, with the volume
fraction 1 and particle volume v,, = 7d*/6. oy, and Py, are the
single-particle scattering cross section and normalized phase function
using the Mie theory [21]. S(0, d) represents the static structure factor
(SSF), which describes the interference between scattered electric fields
from particles. The two coefficients depend on the volume fraction and
optical wavelength A, but we abbreviate the dependence here for simple
notation.

The above formulations are based on an optics and engineering
perspective. In optical measurements, the wavelength is typically se-
lected in advance and colloidal samples with specified diameters are
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Fig. 1. Schematics of (a) light propagation on the macroscopic (centimeter) scale, (b) electromagnetic scattering on the microscopic (micrometer) scale in a
monodisperse colloidal suspension, and (c) hard-sphere (HS) interaction between particles.

Table 1

Relationship of the volume fraction expansion between the RDF g(r), SSF S(9),
and two scattering coefficients u, and u/, where the order index j = 1,2,3,...
for the same treatment of the particle correlation.

g(r) 5(0) uy and u!
Expansion order j-1 j j+1
Expansion coefficient g1 S; (o} and Qf
Interparticle correlation range jd - -

used. Consequently, many studies examine the effects of wavelength
and particle diameter on optical properties separately (e.g., [12]).
Furthermore, optical measurement studies extensively investigate the
dependence of scattering intensity on the scattering angle (e.g., [10]).

The DST results agree with FLEs’ results in the current volume frac-
tion range [19], indicating that the far-field interference, considered in
this study, is the dominant contribution.

2.3. Static structure factor (SSF) and its volume fraction expansion

The SSF calculation requires a particle interaction model. Here, we
employed the Percus-Yevick (PY) model [37,38], which is widely used
for colloidal suspensions [26,27]. The PY model is one of the hard-
sphere (HS) repulsion models, as shown in Fig. 1(c), and accounts
for the indirect contributions of pair correlations through intermediate
many-body effects [30]. The PY model would be the most reliable
in colloidal systems without particle agglomeration because the DST
with the PY model accurately describes the measurement data of the
scattering properties at different volume fractions up to approximately
25% [18,33,34]. The analytical formulation of the SSF for the PY model
is given as

Spy(n, K) =1/[1+Y (1. K)], 3

where K = 4zn,dA~'sin(9/2) with the refractive index of the back-
ground medium n,. The explicit formulation of Y (5, K) is referred to
in [19,38].
We expand the SSF using the PY model in a series of the volume
fraction, 5
NP
Spy(m) ~ . Sl =1+ S0+ Sym* . (4)
Jj=0
S; is the expansion coefficient with S; = 1 and N, is the maximum
expansion order, which is theoretically infinity. The unity value of the
SSF corresponds to no interference. In the S;-calculation, we used two
approaches: the cluster and Taylor expansion approaches. The former
approach provides a physical interpretation between the particle cor-
relation and interference, but its calculation is complicated especially
at a high order. The latter approach enables the simple calculation,
but it does not provide the physical interpretation. For systematic
examination, this study used both approaches in a complementary
manner.

2.3.1. Cluster expansion approach

In this subsection, we calculated S; in Eq. (4) using the cluster
expansion approach [28-31] up to the third order (N, = 3). This ap-
proach is based on the radial distribution function (RDF), g(#), with the
particle distance 7 = r/d normalized by the particle diameter, as shown
in Fig. 2(a). The RDF describes a pair correlation between particles
and a local particle configuration induced by particle interaction. The
Fourier transform of the RDF gives the SSF. As listed in Table 1, the
expansion order of the RDF is one lower than that of the SSF for the
same treatment of the particle correlation, because the SSF involves the
volume integration. Thus, we expanded the RDF up to the second order,

8y ()= G = 1) g+ Ze1F + 22 5Py | +00r) ®)

The step function, O(# — 1), comes from the Boltzmann factor with
the HS potential and represents the excluded volume. The expansion
coefficients, g, = 1, g,(7), and g,(#), represent the cluster integrals for
the zeroth, first, and second orders.

The explicit form of g, for the PY model is given as [28]

g1(Fpp) = /dfsf(fm)f("zﬂ
= 4?” (1 —%f12+%ﬁ2) [1-0G,-2)]. (6)

Here, f(#;) = O(f,; — 1) — 1 represents the Mayer function with the HS
potential, #,; denotes the distance between Particle k and Particle / with
k =1,2,...and / = 2,3,..., normalized by the diameter. The explicit
labeling of particles clearly distinguishes the target particles (1 and 2)
from the intermediate particles (the others). The cluster integral, g, is
drawn by a graph or diagram in Fig. 2(b), and it involves the indirect
effect via Particle 3: correlations between Particles 1-3 and Particles
2-3. From the function 1 — ©(#|, — 2) in Eq. (6), g, represents the pair
correlation for interparticle distances up to 2d, as listed in Table 1.
In the second-order expansion, the PY model treats the following two
cluster integrals, represented as g, and g, [30]

8 (F12) = 824(F12) + &28(F12)s
ng(f12)=/df3/df4f(f13)f(fz4)f(f34), 7)

&) = / d, / dry f(713) S (Fp3)f (Pag) f (F3). €))
The explicit forms of g,, and g, are calculated as [29]

ga(Prp) = 7% [1 = 6@, - 3)|

2 23 4 26
9 27 9, o T T T
X (=24 2py— 22 12 . 9
( 3 70, 52T T T o 1260) ©)
&p(P1) = 277 [1 —O(F, — 2)]
) 3 4 26
16 9 97, ", Tn, o
x 2o = - p, 222y 12 ) 10
(9 355, 601274 T T 20 " 1260 (10)

The above expressions indicate that g,, and g, represent the pair
correlations for interparticle distances up to 3d and 2d, respectively.
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g1 g2A 92B

Fig. 2. (a) Schematic of pair correlation for interparticle distances. (b) Graph representation of the cluster integrals, g,, g,,, and g,5. Open vertices indicate fixed
particle positions, solid vertices represent integration over the position, and bonds denote the direct correlation via the Mayer function.

1,2,3), we
S, in the following,

From the expansion coefficients of the RDF, g;_; (j
obtained the expansion coefficient of the SSF,

51K = 2 " 4 [0 - g - 1] sinlKr)
S$H(K) = %9/ drr*O@ — l)gl(r)sm(lfi‘)’

K
53(K) = 22 (2) /0 drr29(r— g, (7 )Sm( r) an

2.3.2. Taylor expansion approach
In the calculations of S; (Eq. (4)), we employed the Taylor expan-
sion of the SSF for the PY model (Eq. (3)),

oS
Si(K)= —2-| ==Y,
n ly=0
laSpy 1
Sy (K =Y2-_Y,
»(K) = o 50
’>S
Sy(K) = L 2 Y} +YY, - oY,
3! on’ =0
1 0*Spy 3.0 1y, 1 1
SyK)=— —2V | =yt 22y, 4 Y24 oYY, - =Y, (12
4(K) =4 o' |, Py ht Y Y- 7Y, (12)

Here, we considered the expansion up to the fourth order (N, = 4). The
explicit formulations of ¥; (i = 1,2,3,4) are calculated as

aY _ 24
Y{(K —
1K) = 011 =%
1 0 Y 96 24
HhK) =5 ot o F(4Xla_3xlh)+FX2a’
Y| _72-60 576
Y.(K)= — — X X + X s
=51 Gp |, = T K X+ 5 X
1 oY 96 144 - 60
Y(K)=— — = —(456X,, - 513X ;) + X 13
4+(K) 4 ot |- K3( la 1) 2a 13
Xia> X1p> and X,, are given as
X14(K)=sinK — Kcos K,
le(K)=ZsinK+<%—l>KcosK—%,
6 . 12 24 24
X2a(K)—4<1—F)smK—<l—F+F)KCOSK+F. (14)

We have preliminarily confirmed that the §;-results obtained using
the Taylor expansion approach are analytically equivalent to those
obtained using the cluster expansion approach up to the third order.

2.4. Volume fraction expansion of the light scattering properties

Using the expansion results for the SSF (Eq. (4)), we obtained the
expansion form of the scattering coefficient as
N(‘
Hs,exp = manQj:rlj = msn+msQi’12+me;”3 ) (15)
j=0

o) :271'/0 d0sin 0Py, S;. (16)

Here, m; = o y;./v,, and Qj = 1. We also obtained the form of the
reduced scattering coefficient as

NB
M;,exp = mgn Z erlj = msQ(I;rl + mserlz + msQ§ﬂ3 Tt (17)
j=0
n A
Qf = 27r/ dfsin6(1 — cos 0) Py, S (18)
0

Here, Qg = 1 — gy with the anisotropic factor g,,,, using the Mie
theory.

Q¢ and QF are in the same expansion order of S for the SSF, as
listed in Table 1. Meanwhile, the expansion order of the two scattering
coefficients is higher than that of the SSF by unity from the forms of
the above equations. The first-order expansion (N, = 0) of the two
scattering coefficients corresponds to the independent scattering theory
(IST), which does not account for the interference.

2.5. Numerical methods and conditions

Numerical calculations of the two scattering coefficients and expan-
sion coefficients require the following input parameters: the particle
size (diameter), optical wavelength, refractive indices of the particle
and background medium, and volume fraction. The volume fraction
ranges from 0.1% to 25%, particle diameter ranges from 100 to 800 nm,
and the wavelength ranges from 600 to 1000 nm (near-infrared region).
The refractive indices of the particles and the background medium
were set to 1.44 and 1.33, respectively, referring to typical values for
particles and water [20], and for simplicity assuming no wavelength
dependence. Our study’s size parameter (zx diameter/wavelength in a
medium) ranges from 0.4 to 5.6, where the Mie scattering is dominant
in the single-particle scattering.

About the DST calculation procedure, please refer to our previous
study [20]. In the numerical calculations of S;, we employed the
formulations of Eq. (12) instead of using Eq. (11) to avoid possible
numerical oscillation in the Fourier transform [39]. In the calculations
of le and Q? (Egs. (16) and (18)), we used the extended trapezoidal
rule.

3. Results and discussion
3.1. SSF and RDF

Before examination of the light scattering properties, we examined
the relation between the interference and particle correlation by the
volume fraction expansion of the SSF and RDF (Egs. (4) and (5)) in Fig.
3. The values of unity represent no particle correlation in the RDF and
no interference in the SSF (Fig. 3(a)). As shown in Fig. 3, the PY results
reflect many-body correlations in the RDF and multiple interference
contributions in the SSF. However, the shapes of the results do not
explicitly reveal the contributions of correlation and interference. To
extract the relationship between them, we employ volume-fraction
decomposition. Here, we plot the SSF as a function of the scattering
angle, following the formulations of the two scattering coefficients in
the DST (Egs. (1) and (2)) from an optics and engineering perspective.



H. Fujii et al.

Colloids and Surfaces A: Physicochemical and Engineering Aspects 733 (2026) 139278

1.5 15 1.5 1.5
- a S =
= 1 N
w1 - 1 1 1
[} N =
2 1
]
1
05 . 05 _ 0.5 05
,/ —_Expansion ___Expansion __Expansion
| . =—No interference P up to 1st order L up to 2nd order L up to 3rd order
- = PY model - = PY model - = PY model - = PY model
0 0 0 0
0 45 90 135 180 0 45 90 135 180 0 45 90 135 180 0 45 90 135 180

(a) Scattering angle [degrees] (b) Scattering angle [degrees] (C) Scattering angle [degrees] (d)Scattering angle [degrees]

X o ol o ol oo
15 |‘\ 15 Excluded:‘ 15 \ Effective 15
— [ olume 1 ‘\ /\ attractive force ’\
L [ Y 1
ol S 1 LR 1 4 L=
o I
1
0.5 ! 0.5 Expansion 05 ___Expansion 0.5 ___Expansion
:—No correlation| up to Oth order| up to 1st order N o l;)g(to 23d| order
~ — PY model — = PY model — — PY model model
0 0 0 0
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Normalized distance [-] Normalized distance [-]

Normalized distance [-] Normalized distance [-]

Fig. 3. Volume-fraction expansion of the SSF (top figures) and RDF (bottom figures) using the PY model at the volume fraction of 20%, particle diameter of
300 nm, optical wavelength of 600 nm. The expansion of the SSF up to the N,th order corresponds to that of the RDF up to the (N, — 1)th order for the same

treatment of particle correlation, as listed in Table 1.

In physical chemistry, however, the K variable is typically used for
a unified description. In either representation, the conclusions of our
discussion remain unchanged.

The zeroth-order expansion of the RDF (bottom of Fig. 3(b)), that
is, goO(* — 1), is known as the Debye model or gas model [40]. This
model treats the excluded volume at the normalized distance less than
unity, where the other particle is not allowed to exist. Correspondingly,
destructive interference appears in the first-order expansion of the SSF
(top of Fig. 3(b)), that is, 1 + Sy, for the scattering angle region of
0 < 6 5 45°, where the SSF values are less than unity. The first-order
term in the RDF expansion (bottom of Fig. 3(c)) includes an effective
attractive contribution arising from a three-body correlation (Eq. (6)),
even in the absence of any direct attractive force [28,30]. The RDF
values are higher than unity in the region of 1 < 7 < 2, meaning
particles are closely packed together by the effective attraction. The
effective attractive contribution results in increasing the SSF values at
small scattering angles (0 < 6 < 30°) in the top figure (c), representing
an enhancement of the constructive interference. Such an increase in
the SSF values at small scattering angles also appears in the sticky
HS model, which accounts for the direct attractive interaction between
particles [23,41], even though this model differs from the HS model
considered in this study. In the SSF expansion (top of Fig. 3(c)), the
peak position and value at § ~ 90° become closer to the PY results
compared to the first-order expansion (top of Fig. 3(b)). Fig. 3(d) shows
that the RDF expansion to the second order and the SSF expansion to
the third order closely match the PY model results, indicating that these
orders provide the dominant contributions, where the interparticle
distance for pair correlation is up to 3d.

The SSF results include both destructive and constructive interfer-
ence contributions as a function of the scattering angle. Meanwhile,
the light scattering properties using the DST include two interference
contributions, averaged over the scattering angles (Egs. (1) and (2)), as
discussed in the following subsection.

3.2. Light scattering properties

In this subsection, we examined the interference effect on the two
scattering coefficients by their volume-fraction expansions (Egs. (15)
and (17)) with the expansion coefficients (Eqs. (16) and (18)). Here,
the DST is the most accurate model without expansion, as the theory

provides an excellent agreement with measurement data. Against the
DST, we investigated a relative difference (RD), which is defined as

RD(Expansion) = [N R(DST) — N R(Expansion)]/ N R(DST), 19

where NR(DST) and N R(Expansion) are the numerical results of the
DST and expansions at each volume fraction.

Figs. 4(a) and (b) show the volume-fraction dependencies in the par-
ticle diameter of 100 nm (small size case) and wavelength of 600 nm.
The orange-shaded area indicates the RD region, corresponding to a
+10% range from the DST results. The first-order expansion results
(ugy = mgn and ! = megﬂ), corresponding to the IST, are linear in
the volume fraction because the SSF values are unity (top of Fig. 3(a)),
indicating no interference. In the volume fraction range smaller than
3%, the first-order expansion agrees with the DST results to within
+10% RD.

Meanwhile, the expansions up to higher orders show curvilinear
trends due to interference contributions. Higher-order expansion results
tend to agree with the DST results over a broader range of volume
fractions. In Fig. 4(b), the agreement ranges for the second through
fifth-order expansions are up to approximately 11%, 16%, 19%, and
22% of the volume fraction, respectively. These results suggest that
for small diameters, the DST results include multiple interference con-
tributions induced by indirect contributions from the pair correlation
through intermediate many-body effects.

Figs. 4(c) and (d) show the results for the two coefficients at a
diameter of 600 nm (large size case). Compared to the small-diameter
case, the lower-order expansion results agree with the DST across the
entire volume fraction range; the third-order expansion is sufficient for
the scattering coefficient, and the second-order expansion is adequate
for the reduced scattering coefficient. These results suggest that the
higher-order contributions from pair correlation and interference have
a small impact on both scattering coefficients for a large diameter.
From the perspective of expansion convergence, the large-diameter case
shows fast convergence as the expansion order increases. Although
not shown here, for the smaller-diameter case (¢ = 100 nm), the
expansion results up to sixth order (N, = 5) are within 10% of the
DST results, indicating slower convergence. Further investigation into
the quantitative convergence trends will be the subject of future work.

In Fig. 5, we investigated the absolute values of the RD for the
second- and third-order expansions in the two scattering coefficients
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at different wavelengths and diameters with a volume fraction of 20%.
Here, the RD values greater than 50 were capped at 50 to ensure clarity
in the plots. All four cases demonstrated that the RD values strongly
depend on the wavelength within the diameter range of 100-300 nm.
In the other diameter range, however, the RD values are less dependent
on the wavelength. Here, we discuss the RD results by the diameter
rather than the wavelength.

Fig. 5(a) shows that the RD values for the second-order expan-
sion exceed 20%, even over a large diameter range. This indicates
that the second-order approximation does not accurately describe the
scattering coefficient. In contrast, the third-order results in Fig. 5(b)
show that the RD values are below 10% for diameters larger than
approximately 300 nm, suggesting that the third-order approximation
is valid for the scattering coefficient. Figs. 5(c) and (d) show that
the RD values for both the second- and third-order results of the
reduced scattering coefficient are below 10% for diameters larger than
approximately 300 nm. These results suggest that the second-order
approximation adequately describes the interference contributions. The
second- and third-order expansions account for the contributions of

the excluded volume and the effective attractive force, respectively.
While the scattering coefficient mainly reflects both contributions, the
reduced scattering coefficient primarily reflects the excluded volume
contribution.

3.3. Expansion coefficients of the two scattering coefficients

As shown in Fig. 4(a), at high volume fractions, the second-order
expansions are smaller than the first-order expansions (IST with no
interference treatment). This result suggests that the expansion coef-
ficient of Q7] is negative, meaning the destructive interference con-
tribution. Also, the larger values of the third-order expansion than
the second-order expansion indicate the positive value of Q] with the
constructive interference contribution. Here, we examine the expansion
terms of anf and Qf #’ in Fig. 6, rather than considering the expansion
coefficients alone. As shown in the expansion forms of the two scatter-
ing coefficients (Egs. (15) and (17)), each term is the product of the
expansion coefficient and the power #/.
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Figs. 6(a) and (b) show the diameter dependence of the expansion
terms for the scattering coefficient up to the fourth order at wave-
lengths of 600 nm and 1000 nm, respectively. Here, cool and warm
colors represent negative and positive values, respectively, and # is set
as 0.2. The anf values are negative for odd orders and positive for
even orders, indicating that the odd- and even-order terms contribute as
destructive and constructive interference, respectively. In the diameter
region smaller than approximately 300 nm, the results at each order
vary with diameter, whereas in the larger diameter region, they remain
nearly constant. The diameter dependence of the expansion terms
explains the trend of the scattering coefficient expansion, as shown in
Figs. 5(a) and (b). At higher orders, the anf values become smaller,
indicating that the expansion is approaching convergence. Figs. 6(c)
and (d) show that the Q;? n/ results exhibit different trends in expansion
order compared with the anf results, except for the first-order case.
For instance, at a wavelength of 1000 nm, the Q‘;n2 values are positive
in the diameter region smaller than 175 nm but negative in the larger
diameter region. In contrast, the Q;n2 values remain positive through-
out. The Q;’ n/ values are slightly negative across a wide range of orders
and diameters, indicating that destructive interference predominates in
the reduced scattering coefficient over constructive interference.

We investigate the reason behind the difference in expansion order
trends between 0] and Q;’ by analyzing their integrands (i.e., the right-
hand sides of Egs. (16) and (18)) as functions of the scattering angle
0. We focus on the first- and second-order results for a diameter of
300 nm and a wavelength of 600 nm. The difference in the integrands
between Q; and Q;’ lies in the weight function. As shown in Fig. 7(a),
the weight function, sinf(1 — cos @), in the integrand of Qﬁ.’ peaks at
a larger scattering angle than sin@ in the integrand of 05, due to the
half-angle identity 1 — cos6 = 2sin*(6/2). This peak shift significantly
reduces the integrand (the product of Py,;,S ; and the weight function)

in the forward-scattering region (0 < 6 <

< 30°), and moderately in
the intermediate angle range (30° < 6 < 60°). As shown in Fig.
7(b), the prominent negative peak in the integrand of O} at 6 ~ 22°
becomes suppressed in the integrand of Q’l’ due to the difference in the
weight functions. This suppression leads to a decrease in the Q‘l7 value
(obtained via integration over the scattering angle) compared to the
0] value. Fig. 7(c) shows that the integrand of o exhibits a positive
peak at 0 ~ 15°, originating from the SSF peak in the forward scattering
region, which represents the effective attractive contribution, as shown
in Fig. 3(c). This positive peak in the integrand of Q7 is significantly
reduced to less than 1.5 in the integrand of Qg, owing to the weight
function. Meanwhile, the negative peak at § ~ 45° in the integrand of
O is only moderately reduced in the integrand of 0", remaining greater
than 1.5. Consequently, the value of Q’z’ is slightly negative (—0.23),
whereas that of Q; is positive (4.02).

3.4. Examination of the experimental data

Finally, we apply the developed decomposition approach to ex-
perimental data from monodisperse colloidal suspensions. We used
data of silica and polystyrene particles suspended in water, specifically
for the scattering and reduced scattering coefficients, as reported by
J. D. Nguyen et al. [18] and L. Bressel et al. [13], respectively, as shown
in Fig. 8. In the numerical calculations, the refractive indices of silica
and polystyrene were set to 1.44 at a wavelength of 1297 nm and 1.57
at 982 nm, respectively, based on the corresponding references.

The top panels of Fig. 8 show that the DST predictions agree well
with the measured scattering and reduced scattering coefficients across
the entire volume fraction range. In all cases except for case (c), the
expansion results up to the fourth order (N, = 3) show good agreement
with both the measurement data and the DST results. This observation
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fraction. The orange-shaded area indicates the RD region within 10% deviation from the measurement data. (Bottom) Expansion terms. The other details are the

same as in Figs. 4 and 6.

suggests that the dominant interference contributions are captured in
the N, = 3 case, and that the dominant pair correlation occurs at inter-
particle distances up to 3d. In case (c), however, a fifth-order expansion
is required to achieve agreement with the measurement data. This case
corresponds to a small-diameter condition, where multiple interference
contributions become more significant, as discussed in Figs. 4(a) and
(b). The bottom panels of the figure show that the absolute values of the
expansion terms are larger for the smaller-diameter cases ((a) and (c))
than for the larger-diameter cases ((b) and (d)). In case (c), the absolute
values are the largest among all cases, indicating the most significant
interference contributions. The expansion-order dependence of Qj? n is
more complex, particularly in the second and third orders, compared
to the more regular behavior observed in the Q;nf results.

4. Conclusions

We investigated the far-field interference effects on the light scatter-
ing properties of concentrated colloidal suspensions by decomposing
these properties through a volume fraction expansion. We calculated
the two scattering coefficients using the DST with hard-sphere interac-
tion and series expansions up to the fifth order over volume fractions
ranging from 0.1% to 25%, particle diameter from 100 to 800 nm,
and wavelengths from 600 to 1000 nm. Our numerical calculations
show that, for the reduced scattering coefficient, the second-order
expansion agrees well with the DST results for particle diameters larger
than approximately 300 nm. This result indicates that the dominant
contribution arises from destructive interference due to the excluded
volume between particles, a manifestation of particle correlations. For
the scattering coefficient, the third-order expansion agrees with the DST
results in the larger-diameter region. This agreement reveals a hidden
constructive-interference contribution arising from the effective attrac-
tive force, even in the absence of a direct attractive force. For smaller
diameters, higher-order expansions are required to accurately repro-
duce the DST results, due to the involvement of multiple interference
effects in both scattering coefficients. For the scattering coefficient,
odd-order terms of expansion correspond to destructive interference,
while even-order terms correspond to constructive interference. In
contrast, the correspondence in the reduced scattering coefficient is
more complex and depends on both particle diameter and wavelength
due to the weight function. The developed decomposition approach
can be applied to measured light scattering data to analyze multiple
interference contributions.

As a future direction, it is important to extend the developed ap-
proach to other colloidal systems, such as polydisperse suspensions [42]
and agglomerated systems involving direct attractive forces between

particles. Among the electromagnetic theories for colloidal systems,
effective medium approximations (EMAs; mixing rules) have also been
widely employed. The EMAs can be derived from the FLEs via the
Born series [43,44]. This fact implies a relationship between the EMAs
and the DST, as well as the possibility of applying the volume-fraction
expansion to the EMAs. Exploring this possibility remains a challeng-
ing task for future research. Another direction for future work is to
investigate interference contributions under conditions in which FLEs
or full-wave calculations [45] are required instead of the DST, such as
in super-dense suspensions or for particles with high refractive indices.

Our findings offer a quantitative understanding of interference ef-
fects on light scattering properties, which could not be fully analyzed by
DST calculations alone [13,17,18]. They also contribute fundamental
insights toward the development of nanotechnological methods for
non-destructive evaluation of particle properties using scattered light.
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