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H I G H L I G H T S

Analytic decomposition of interference 
in light scattering via density expansion.
Calculations of the scattering coefficients 
using the electromagnetic theory.
Small particle size case enhances the 
multiple interference in the coefficients.
This decomposition approach unveils hid-
den constructive interference.
Constructive interference correlates with 
the effective attraction between parti-
cles.

 G R A P H I C A L  A B S T R A C T

 R T I C L E  I N F O
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nterference effect
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ensity expansion approach
air correlation between particles

 A B S T R A C T

In dense colloidal suspensions, far-field interference between electric fields scattered by particles significantly 
influences light scattering properties. Previous studies using dependent scattering theory (DST), based on 
the first-order solution of the Foldy–Lax equations, have shown that destructive interference affects the 
scattering properties via the static structure factor. Meanwhile, the contributions of multiple interference and 
the relationship between interference and particle correlation remain unclear. We aim to clarify the interference 
effects and their relationship using a density expansion approach, which allows us to decompose the multiple 
interference contributions. We calculated the two scattering coefficients using the DST and the expansions 
with hard-sphere interaction in the volume fraction range up to 25% and the optical wavelength range 
of 600–1000 nm. Our numerical calculations showed that for particle diameters larger than approximately 
300 nm, the second-order expansion for the reduced scattering coefficient agrees well with the DST results. 
This result reflects the destructive interference induced by the excluded volume between particles. For the 
scattering coefficient, the third-order expansion agrees with the DST results in the larger-diameter region. This 
agreement reveals a hidden constructive-interference contribution driven by an effective attractive interaction, 
even in the absence of any direct attractive force. For smaller diameters, higher-order expansions are necessary 
to accurately reproduce the DST results, as multiple interference contributions are involved. For the scattering 
coefficient, odd-order terms of expansion correspond to destructive interference, while even-order terms 
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correspond to constructive interference. In contrast, the correspondence in the reduced scattering coefficient 
is more complex and depends on both particle diameter and wavelength. Our findings provide fundamental 
knowledge for developing nanotechnology to evaluate colloidal particle properties non-destructively using 
scattered light.
1. Introduction

Colloidal suspensions are essential and found in various nano- and 
micro-scale engineering and scientific fields [1–3], such as slurries in 
chemical engineering, colloidal photocatalysts in environmental reme-
diation, and milk in food science. High concentrations are significantly 
demanded in various industries, such as for improving product quality 
and reducing transport costs through the weight reduction of suspen-
sions [4,5]. High concentrations are also crucial for physicochemical 
phenomena, including glass transition and its quasi-universality [6,7].

Light scattering techniques have been extensively developed to re-
trieve the physicochemical properties (i.e., viscosity) [8] and colloidal 
particle properties (i.e., nano- and micro-particle size, and agglomera-
tion degree) [9–12]. In a light-scattering process, the direction of the 
scattered light frequently changes due to colloidal particles (scatter-
ers). Meanwhile, most developed techniques require sample dilution, 
where the volume fraction is less than approximately 5%. Photon 
density wave spectroscopy can potentially retrieve the properties with-
out dilution [13]. To further develop the optical method, quantitative 
understanding of light scattering in dense suspensions needs to be 
clarified [14].

Light scattering properties, one of the physicochemical properties, 
quantify the strength of light scattering. For example, the scattering 
coefficient represents the inverse mean free path of photons [15]. 
Experimental and theoretical studies have extensively examined the de-
pendence of the scattering properties on volume fraction. The scattering 
coefficient shows a linear dependence in the dilute region up to approx-
imately 5% of the volume fraction. This linear trend indicates that there 
is no interference between the scattered electric fields from particles, 
known as independent scattering [9,10,16]. Meanwhile, in the dense 
regime, the rate of increase is reduced, resulting in a curvilinear depen-
dence on the volume fraction. This reduction suggests an enhancement 
of the destructive interference at far field between the scattered fields, 
known as the interference effect [13,17,18]. However, constructive 
interference can also occur, as in Young’s double-slit experiment. Thus, 
it is plausible that the observed interference effect results from a 
combination of constructive and destructive contributions. However, 
their quantitative contributions remain unclear.

The dependent scattering theory (DST) nicely describes the mea-
surement data of the scattering properties in dense suspensions up to 
approximately 25% [13,17,18]. This electromagnetic theory is based 
on the first-order solution of the Foldy–Lax equations, which provide 
a multiple-scattering expansion of Maxwell’s equations [19,20]. The 
DST formulates the scattering coefficient as the integral of the product 
of the single-particle phase function and the static structure factor 
(SSF) over the scattering angle. The Mie theory provides the phase 
function, where the particle diameter is comparable to the wavelength, 
as a summation of special functions [21]. The SSF provides destructive 
and constructive interference contributions [13,18,22,23] and can be 
measured by neutron scattering techniques [24,25]. However, these 
interference contributions vary in a complicated manner with the scat-
tering angle, wavelength, particle size, and other factors. Moreover, 
the SSF reflects the local particle configuration and a pair correlation 
between particles induced by particle interaction, such as the hard-
sphere repulsion [26,27]. Quantitative understanding is hindered by 
both the complicated form of the phase function and the variation in 
the SSF.

We aim to clarify the two interference contributions on the light 
scattering properties in dense suspensions by a density expansion ap-
proach. The expansion approach was initially developed in physical 
2 
chemistry to study the particle correlations using the radial distribution 
function (RDF) [28–31]. The RDF is related to the SSF as its inverse 
Fourier transform. Each order of the volume fraction (number density) 
links to the particle correlation, such as the excluded volume and 
effective attractive force. Despite its widespread use, to the best of 
our knowledge, the volume-fraction expansion approach has not been 
applied to the decomposition analysis of light-scattering properties, 
integrated over scattering angles. Thus, we also aim to clarify the re-
lationship between interference and particle correlation. We calculated 
the scattering properties using the DST over a wide range of particle di-
ameters (100–800 nm) and optical wavelengths (600–1000 nm). Then, 
we expanded the scattering properties in order of the volume fraction 
and examined the interference contributions and their relationship 
quantitatively.

2. Theory and model

2.1. Modeling colloidal suspensions

Among the light scattering properties, we mainly considered the 
scattering and reduced scattering coefficients, 𝜇𝑠 and 𝜇′

𝑠. The two 
coefficients characterize the scattering events at unit length in the 
ballistic and diffusive regimes (small and large scales), respectively, as 
shown in Fig.  1(a). Each diffusion process, characterized by 𝜇′

𝑠, involves 
multiple ballistic scattering events characterized by 𝜇𝑠.

We model the colloidal suspension as a system of spherical particles 
dispersed in a continuous solvent medium (water), as shown in Fig. 
1(b). We focus on a monodisperse system with a particle diameter 
𝑑. Examples of the actual systems are silica and polystyrene parti-
cles [18,32–34], whose size distributions are sufficiently sharp to hold 
the monodisperse approximation [35]. For simplicity, we assume that 
no agglomeration occurs in the system.

We carefully use the terms ‘‘independent’’ scattering and ‘‘depen-
dent’’ scattering throughout this paper. Although their ambiguity has 
been noted [36], these terms are widely used in optics and engineering 
research. The DST used in this study is based on the first-order solution 
of the Foldy–Lax equations (FLEs), which provide a multiple-scattering 
expansion of Maxwell’s equations [19,20].

2.2. Dependent scattering theory (DST)

The DST provides the formulations of the two scattering coefficients 
(incoherent properties) as integrals with respect to the scattering angle 
𝜃 [17,18].

𝜇𝑠,𝐷𝑆𝑇 (𝑑) = 2𝜋𝑛0𝜎𝑠,𝑀𝑖𝑒(𝑑)∫

𝜋

0
𝑑𝜃 sin 𝜃𝑃𝑀𝑖𝑒(𝜃, 𝑑)𝑆(𝜃, 𝑑), (1)

𝜇′
𝑠,𝐷𝑆𝑇 (𝑑) = 2𝜋𝑛0𝜎𝑠,𝑀𝑖𝑒(𝑑)∫

𝜋

0
𝑑𝜃 sin 𝜃(1 − cos 𝜃)𝑃𝑀𝑖𝑒(𝜃, 𝑑)𝑆(𝜃, 𝑑). (2)

Here, the number density 𝑛0 is given as 𝜂∕𝑣𝑚 with the volume 
fraction 𝜂 and particle volume 𝑣𝑚 = 𝜋𝑑3∕6. 𝜎𝑠,𝑀𝑖𝑒 and 𝑃𝑀𝑖𝑒 are the 
single-particle scattering cross section and normalized phase function 
using the Mie theory [21]. 𝑆(𝜃, 𝑑) represents the static structure factor 
(SSF), which describes the interference between scattered electric fields 
from particles. The two coefficients depend on the volume fraction and 
optical wavelength 𝜆, but we abbreviate the dependence here for simple 
notation.

The above formulations are based on an optics and engineering 
perspective. In optical measurements, the wavelength is typically se-
lected in advance and colloidal samples with specified diameters are 
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Fig. 1. Schematics of (a) light propagation on the macroscopic (centimeter) scale, (b) electromagnetic scattering on the microscopic (micrometer) scale in a 
monodisperse colloidal suspension, and (c) hard-sphere (HS) interaction between particles.
Table 1
Relationship of the volume fraction expansion between the RDF 𝑔(𝑟), SSF 𝑆(𝜃), 
and two scattering coefficients 𝜇𝑠 and 𝜇′

𝑠, where the order index 𝑗 = 1, 2, 3,…
for the same treatment of the particle correlation.
 𝑔(𝑟) 𝑆(𝜃) 𝜇𝑠 and 𝜇′

𝑠  
 Expansion order 𝑗 − 1 𝑗 𝑗 + 1  
 Expansion coefficient 𝑔𝑗−1 𝑆𝑗 𝑄𝑠

𝑗 and 𝑄𝑝
𝑗 

 Interparticle correlation range 𝑗𝑑 – –  

used. Consequently, many studies examine the effects of wavelength 
and particle diameter on optical properties separately (e.g., [12]). 
Furthermore, optical measurement studies extensively investigate the 
dependence of scattering intensity on the scattering angle (e.g., [10]).

The DST results agree with FLEs’ results in the current volume frac-
tion range [19], indicating that the far-field interference, considered in 
this study, is the dominant contribution.

2.3. Static structure factor (SSF) and its volume fraction expansion

The SSF calculation requires a particle interaction model. Here, we 
employed the Percus–Yevick (PY) model [37,38], which is widely used 
for colloidal suspensions [26,27]. The PY model is one of the hard-
sphere (HS) repulsion models, as shown in Fig.  1(c), and accounts 
for the indirect contributions of pair correlations through intermediate 
many-body effects [30]. The PY model would be the most reliable 
in colloidal systems without particle agglomeration because the DST 
with the PY model accurately describes the measurement data of the 
scattering properties at different volume fractions up to approximately 
25% [18,33,34]. The analytical formulation of the SSF for the PY model 
is given as 
𝑆𝑃𝑌 (𝜂,𝐾) = 1∕[1 + 𝑌 (𝜂,𝐾)], (3)

where 𝐾 = 4𝜋𝑛𝑏𝑑𝜆−1 sin(𝜃∕2) with the refractive index of the back-
ground medium 𝑛𝑏. The explicit formulation of 𝑌 (𝜂,𝐾) is referred to 
in [19,38].

We expand the SSF using the PY model in a series of the volume 
fraction, 𝜂

𝑆𝑃𝑌 (𝜂) ∼
𝑁𝑒
∑

𝑗=0
𝑆𝑗𝜂

𝑗 = 1 + 𝑆1𝜂 + 𝑆2𝜂
2 ⋯ . (4)

𝑆𝑗 is the expansion coefficient with 𝑆0 = 1 and 𝑁𝑒 is the maximum 
expansion order, which is theoretically infinity. The unity value of the 
SSF corresponds to no interference. In the 𝑆𝑗 -calculation, we used two 
approaches: the cluster and Taylor expansion approaches. The former 
approach provides a physical interpretation between the particle cor-
relation and interference, but its calculation is complicated especially 
at a high order. The latter approach enables the simple calculation, 
but it does not provide the physical interpretation. For systematic 
examination, this study used both approaches in a complementary 
manner.
3 
2.3.1. Cluster expansion approach
In this subsection, we calculated 𝑆𝑗 in Eq. (4) using the cluster 

expansion approach [28–31] up to the third order (𝑁𝑒 = 3). This ap-
proach is based on the radial distribution function (RDF), 𝑔(𝑟̂), with the 
particle distance 𝑟̂ = 𝑟∕𝑑 normalized by the particle diameter, as shown 
in Fig.  2(a). The RDF describes a pair correlation between particles 
and a local particle configuration induced by particle interaction. The 
Fourier transform of the RDF gives the SSF. As listed in Table  1, the 
expansion order of the RDF is one lower than that of the SSF for the 
same treatment of the particle correlation, because the SSF involves the 
volume integration. Thus, we expanded the RDF up to the second order, 

𝑔𝑃𝑌 (𝑟̂) = 𝛩(𝑟̂ − 1)
[

𝑔0 +
6
𝜋
𝑔1(𝑟̂)𝜂 +

36
𝜋2

𝑔2(𝑟̂)𝜂2
]

+ 𝑂(𝜂3). (5)

The step function, 𝛩(𝑟̂ − 1), comes from the Boltzmann factor with 
the HS potential and represents the excluded volume. The expansion 
coefficients, 𝑔0 = 1, 𝑔1(𝑟̂), and 𝑔2(𝑟̂), represent the cluster integrals for 
the zeroth, first, and second orders.

The explicit form of 𝑔1 for the PY model is given as [28]

𝑔1(𝑟̂12) = ∫ 𝑑𝒓̂3𝑓 (𝑟̂13)𝑓 (𝑟̂23)

= 4𝜋
3

(

1 − 3
4
𝑟̂12 +

1
16

𝑟̂312
)

[

1 − 𝛩(𝑟̂12 − 2)
]

. (6)

Here, 𝑓 (𝑟̂𝑘𝑙) = 𝛩(𝑟̂𝑘𝑙 − 1) − 1 represents the Mayer function with the HS 
potential, ̂𝑟𝑘𝑙 denotes the distance between Particle 𝑘 and Particle 𝑙 with 
𝑘 = 1, 2,… and 𝑙 = 2, 3,…, normalized by the diameter. The explicit 
labeling of particles clearly distinguishes the target particles (1 and 2) 
from the intermediate particles (the others). The cluster integral, 𝑔1, is 
drawn by a graph or diagram in Fig.  2(b), and it involves the indirect 
effect via Particle 3: correlations between Particles 1–3 and Particles 
2–3. From the function 1 − 𝛩(𝑟̂12 − 2) in Eq. (6), 𝑔1 represents the pair 
correlation for interparticle distances up to 2𝑑, as listed in Table  1. 
In the second-order expansion, the PY model treats the following two 
cluster integrals, represented as 𝑔2𝐴 and 𝑔2𝐵 [30]
𝑔2(𝑟̂12) = 𝑔2𝐴(𝑟̂12) + 𝑔2𝐵(𝑟̂12),

𝑔2𝐴(𝑟̂12) = ∫ 𝑑𝒓̂3 ∫ 𝑑𝒓̂4𝑓 (𝑟̂13)𝑓 (𝑟̂24)𝑓 (𝑟̂34), (7)

𝑔2𝐵(𝑟̂12) = ∫ 𝑑𝒓̂3 ∫ 𝑑𝒓̂4𝑓 (𝑟̂13)𝑓 (𝑟̂23)𝑓 (𝑟̂24)𝑓 (𝑟̂34). (8)

The explicit forms of 𝑔2𝐴 and 𝑔2𝐵 are calculated as [29]
𝑔2𝐴(𝑟̂12) = 𝜋2 [1 − 𝛩(𝑟̂12 − 3)

]

×

(

−9
4
+ 27

70𝑟̂12
+ 9

5
𝑟̂12 −

𝑟̂212
4

−
𝑟̂312
6

+
𝑟̂412
20

−
𝑟̂612
1260

)

, (9)

𝑔2𝐵(𝑟̂12) = 2𝜋2 [1 − 𝛩(𝑟̂12 − 2)
]

×

(

16
9

− 9
35𝑟̂12

− 97
60

𝑟̂12 +
𝑟̂212
4

+
𝑟̂312
6

−
𝑟̂412
20

+
𝑟̂612
1260

)

. (10)

The above expressions indicate that 𝑔2𝐴 and 𝑔2𝐵 represent the pair 
correlations for interparticle distances up to 3𝑑 and 2𝑑, respectively. 
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Fig. 2. (a) Schematic of pair correlation for interparticle distances. (b) Graph representation of the cluster integrals, 𝑔1, 𝑔2𝐴, and 𝑔2𝐵 . Open vertices indicate fixed 
particle positions, solid vertices represent integration over the position, and bonds denote the direct correlation via the Mayer function.
From the expansion coefficients of the RDF, 𝑔𝑗−1 (𝑗 = 1, 2, 3), we 
obtained the expansion coefficient of the SSF, 𝑆𝑗 , in the following,

𝑆1(𝐾) = 24
𝑑3 ∫

∞

0
𝑑𝑟𝑟2

[

𝛩(𝑟̂ − 1)𝑔0 − 1
] sin(𝐾𝑟)

𝐾𝑟
,

𝑆2(𝐾) = 24
𝑑3

6
𝜋 ∫

∞

0
𝑑𝑟𝑟2𝛩(𝑟̂ − 1)𝑔1(𝑟̂)

sin(𝐾𝑟)
𝐾𝑟

,

𝑆3(𝐾) = 24
𝑑3

( 6
𝜋

)2

∫

∞

0
𝑑𝑟𝑟2𝛩(𝑟̂ − 1)𝑔2(𝑟̂)

sin(𝐾𝑟)
𝐾𝑟

. (11)

2.3.2. Taylor expansion approach
In the calculations of 𝑆𝑗 (Eq. (4)), we employed the Taylor expan-

sion of the SSF for the PY model (Eq. (3)),

𝑆1(𝐾) =
𝜕𝑆𝑃𝑌
𝜕𝜂

|

|

|

|𝜂=0
= −𝑌1,

𝑆2(𝐾) = 1
2

𝜕2𝑆𝑃𝑌

𝜕𝜂2
|

|

|

|

|𝜂=0
= 𝑌 2

1 − 1
2
𝑌2,

𝑆3(𝐾) = 1
3!

𝜕3𝑆𝑃𝑌

𝜕𝜂3
|

|

|

|

|𝜂=0
= −𝑌 3

1 + 𝑌1𝑌2 −
1
6
𝑌3,

𝑆4(𝐾) = 1
4!

𝜕4𝑆𝑃𝑌

𝜕𝜂4
|

|

|

|

|𝜂=0
= 𝑌 4

1 − 3
2
𝑌 2
1 𝑌2 +

1
4
𝑌 2
2 + 1

3
𝑌1𝑌3 −

1
24

𝑌4. (12)

Here, we considered the expansion up to the fourth order (𝑁𝑒 = 4). The 
explicit formulations of 𝑌𝑖 (𝑖 = 1, 2, 3, 4) are calculated as

𝑌1(𝐾) = 𝜕𝑌
𝜕𝜂

|

|

|

|𝜂=0
= 24

𝐾3
𝑋1𝑎,

𝑌2(𝐾) = 1
2

𝜕2𝑌
𝜕𝜂2

|

|

|

|𝜂=0
= 96

𝐾3
(4𝑋1𝑎 − 3𝑋1𝑏) +

24
𝐾3

𝑋2𝑎,

𝑌3(𝐾) = 1
3!

𝜕3𝑌
𝜕𝜂3

|

|

|

|𝜂=0
= 72 ⋅ 60

𝐾3
(𝑋1𝑎 −𝑋1𝑏) +

576
𝐾3

𝑋2𝑎,

𝑌4(𝐾) = 1
4!

𝜕4𝑌
𝜕𝜂4

|

|

|

|𝜂=0
= 96

𝐾3
(456𝑋1𝑎 − 513𝑋1𝑏) +

144 ⋅ 60
𝐾3

𝑋2𝑎. (13)

𝑋1𝑎, 𝑋1𝑏, and 𝑋2𝑎 are given as
𝑋1𝑎(𝐾) = sin𝐾 −𝐾 cos𝐾,

𝑋1𝑏(𝐾) = 2 sin𝐾 +
( 2
𝐾2

− 1
)

𝐾 cos𝐾 − 2
𝐾
,

𝑋2𝑎(𝐾) = 4
(

1 − 6
𝐾2

)

sin𝐾 −
(

1 − 12
𝐾2

+ 24
𝐾4

)

𝐾 cos𝐾 + 24
𝐾3

. (14)

We have preliminarily confirmed that the 𝑆𝑗 -results obtained using 
the Taylor expansion approach are analytically equivalent to those 
obtained using the cluster expansion approach up to the third order.

2.4. Volume fraction expansion of the light scattering properties

Using the expansion results for the SSF (Eq. (4)), we obtained the 
expansion form of the scattering coefficient as

𝜇𝑠,𝑒𝑥𝑝 = 𝑚𝑠𝜂
𝑁𝑒
∑

𝑗=0
𝑄𝑠

𝑗𝜂
𝑗 = 𝑚𝑠𝜂 + 𝑚𝑠𝑄

𝑠
1𝜂

2 + 𝑚𝑠𝑄
𝑠
2𝜂

3 ⋯ , (15)

𝑄𝑠 = 2𝜋
𝜋
𝑑𝜃 sin 𝜃𝑃𝑀𝑖𝑒𝑆𝑗 . (16)
𝑗 ∫0

4 
Here, 𝑚𝑠 = 𝜎𝑠,𝑀𝑖𝑒∕𝑣𝑚 and 𝑄𝑠
0 = 1. We also obtained the form of the 

reduced scattering coefficient as

𝜇′
𝑠,𝑒𝑥𝑝 = 𝑚𝑠𝜂

𝑁𝑒
∑

𝑗=0
𝑄𝑝

𝑗𝜂
𝑗 = 𝑚𝑠𝑄

𝑝
0𝜂 + 𝑚𝑠𝑄

𝑝
1𝜂

2 + 𝑚𝑠𝑄
𝑝
2𝜂

3 ⋯ , (17)

𝑄𝑝
𝑗 = 2𝜋 ∫

𝜋

0
𝑑𝜃 sin 𝜃(1 − cos 𝜃)𝑃𝑀𝑖𝑒𝑆𝑗 . (18)

Here, 𝑄𝑝
0 = 1 − 𝑔𝑀𝑖𝑒 with the anisotropic factor 𝑔𝑀𝑖𝑒 using the Mie 

theory.
𝑄𝑠

𝑗 and 𝑄
𝑝
𝑗  are in the same expansion order of 𝑆𝑗 for the SSF, as 

listed in Table  1. Meanwhile, the expansion order of the two scattering 
coefficients is higher than that of the SSF by unity from the forms of 
the above equations. The first-order expansion (𝑁𝑒 = 0) of the two 
scattering coefficients corresponds to the independent scattering theory 
(IST), which does not account for the interference.

2.5. Numerical methods and conditions

Numerical calculations of the two scattering coefficients and expan-
sion coefficients require the following input parameters: the particle 
size (diameter), optical wavelength, refractive indices of the particle 
and background medium, and volume fraction. The volume fraction 
ranges from 0.1% to 25%, particle diameter ranges from 100 to 800 nm, 
and the wavelength ranges from 600 to 1000 nm (near-infrared region). 
The refractive indices of the particles and the background medium 
were set to 1.44 and 1.33, respectively, referring to typical values for 
particles and water [20], and for simplicity assuming no wavelength 
dependence. Our study’s size parameter (𝜋× diameter/wavelength in a 
medium) ranges from 0.4 to 5.6, where the Mie scattering is dominant 
in the single-particle scattering.

About the DST calculation procedure, please refer to our previous 
study [20]. In the numerical calculations of 𝑆𝑗 , we employed the 
formulations of Eq. (12) instead of using Eq. (11) to avoid possible 
numerical oscillation in the Fourier transform [39]. In the calculations 
of 𝑄𝑠

𝑗 and 𝑄
𝑝
𝑗  (Eqs. (16) and (18)), we used the extended trapezoidal 

rule.

3. Results and discussion

3.1. SSF and RDF

Before examination of the light scattering properties, we examined 
the relation between the interference and particle correlation by the 
volume fraction expansion of the SSF and RDF (Eqs. (4) and (5)) in Fig. 
3. The values of unity represent no particle correlation in the RDF and 
no interference in the SSF (Fig.  3(a)). As shown in Fig.  3, the PY results 
reflect many-body correlations in the RDF and multiple interference 
contributions in the SSF. However, the shapes of the results do not 
explicitly reveal the contributions of correlation and interference. To 
extract the relationship between them, we employ volume-fraction 
decomposition. Here, we plot the SSF as a function of the scattering 
angle, following the formulations of the two scattering coefficients in 
the DST (Eqs. (1) and (2)) from an optics and engineering perspective. 
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Fig. 3. Volume-fraction expansion of the SSF (top figures) and RDF (bottom figures) using the PY model at the volume fraction of 20%, particle diameter of 
300 nm, optical wavelength of 600 nm. The expansion of the SSF up to the 𝑁𝑒th order corresponds to that of the RDF up to the (𝑁𝑒 − 1)th order for the same 
treatment of particle correlation, as listed in Table  1.
In physical chemistry, however, the 𝐾 variable is typically used for 
a unified description. In either representation, the conclusions of our 
discussion remain unchanged.

The zeroth-order expansion of the RDF (bottom of Fig.  3(b)), that 
is, 𝑔0𝛩(𝑟̂ − 1), is known as the Debye model or gas model [40]. This 
model treats the excluded volume at the normalized distance less than 
unity, where the other particle is not allowed to exist. Correspondingly, 
destructive interference appears in the first-order expansion of the SSF 
(top of Fig.  3(b)), that is, 1 + 𝑆1𝜂, for the scattering angle region of 
0 < 𝜃 ≲ 45◦, where the SSF values are less than unity. The first-order 
term in the RDF expansion (bottom of Fig.  3(c)) includes an effective 
attractive contribution arising from a three-body correlation (Eq. (6)), 
even in the absence of any direct attractive force [28,30]. The RDF 
values are higher than unity in the region of 1 < 𝑟̂ < 2, meaning 
particles are closely packed together by the effective attraction. The 
effective attractive contribution results in increasing the SSF values at 
small scattering angles (0 < 𝜃 ≲ 30◦) in the top figure (c), representing 
an enhancement of the constructive interference. Such an increase in 
the SSF values at small scattering angles also appears in the sticky 
HS model, which accounts for the direct attractive interaction between 
particles [23,41], even though this model differs from the HS model 
considered in this study. In the SSF expansion (top of Fig.  3(c)), the 
peak position and value at 𝜃 ∼ 90◦ become closer to the PY results 
compared to the first-order expansion (top of Fig.  3(b)). Fig.  3(d) shows 
that the RDF expansion to the second order and the SSF expansion to 
the third order closely match the PY model results, indicating that these 
orders provide the dominant contributions, where the interparticle 
distance for pair correlation is up to 3𝑑.

The SSF results include both destructive and constructive interfer-
ence contributions as a function of the scattering angle. Meanwhile, 
the light scattering properties using the DST include two interference 
contributions, averaged over the scattering angles (Eqs. (1) and (2)), as 
discussed in the following subsection.

3.2. Light scattering properties

In this subsection, we examined the interference effect on the two 
scattering coefficients by their volume-fraction expansions (Eqs. (15) 
and (17)) with the expansion coefficients (Eqs. (16) and (18)). Here, 
the DST is the most accurate model without expansion, as the theory 
5 
provides an excellent agreement with measurement data. Against the 
DST, we investigated a relative difference (RD), which is defined as 
𝑅𝐷(𝐸𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛) = [𝑁𝑅(𝐷𝑆𝑇 ) −𝑁𝑅(𝐸𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛)]∕𝑁𝑅(𝐷𝑆𝑇 ), (19)

where 𝑁𝑅(𝐷𝑆𝑇 ) and 𝑁𝑅(𝐸𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛) are the numerical results of the 
DST and expansions at each volume fraction.

Figs.  4(a) and (b) show the volume-fraction dependencies in the par-
ticle diameter of 100 nm (small size case) and wavelength of 600 nm. 
The orange-shaded area indicates the RD region, corresponding to a 
±10% range from the DST results. The first-order expansion results 
(𝜇𝑠 = 𝑚𝑠𝜂 and 𝜇′

𝑠 = 𝑚𝑠𝑄
𝑝
0𝜂), corresponding to the IST, are linear in 

the volume fraction because the SSF values are unity (top of Fig.  3(a)), 
indicating no interference. In the volume fraction range smaller than 
3%, the first-order expansion agrees with the DST results to within 
±10% RD.

Meanwhile, the expansions up to higher orders show curvilinear 
trends due to interference contributions. Higher-order expansion results 
tend to agree with the DST results over a broader range of volume 
fractions. In Fig.  4(b), the agreement ranges for the second through 
fifth-order expansions are up to approximately 11%, 16%, 19%, and 
22% of the volume fraction, respectively. These results suggest that 
for small diameters, the DST results include multiple interference con-
tributions induced by indirect contributions from the pair correlation 
through intermediate many-body effects.

Figs.  4(c) and (d) show the results for the two coefficients at a 
diameter of 600 nm (large size case). Compared to the small-diameter 
case, the lower-order expansion results agree with the DST across the 
entire volume fraction range; the third-order expansion is sufficient for 
the scattering coefficient, and the second-order expansion is adequate 
for the reduced scattering coefficient. These results suggest that the 
higher-order contributions from pair correlation and interference have 
a small impact on both scattering coefficients for a large diameter. 
From the perspective of expansion convergence, the large-diameter case 
shows fast convergence as the expansion order increases. Although 
not shown here, for the smaller-diameter case (𝑑 = 100 nm), the 
expansion results up to sixth order (𝑁𝑒 = 5) are within 10% of the 
DST results, indicating slower convergence. Further investigation into 
the quantitative convergence trends will be the subject of future work.

In Fig.  5, we investigated the absolute values of the RD for the 
second- and third-order expansions in the two scattering coefficients 
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Fig. 4. Volume-fraction dependence of the two scattering coefficients in the wavelength of 600 nm and particle diameters of 100 and 600 nm (size parameters 
of 0.7 and 4.2): the DST (Eqs. (1) and (2)) and expansions (Eqs. (15) and (17)) up to different orders (𝑁𝑒 + 1). The orange-shaded area represents the region of 
the relative difference (RD), corresponding to a ±10% range from the DST results.
Fig. 5. Absolute values of the RD between the DST and expansion results up to the second and third orders in the scattering and reduced scattering coefficients 
(𝜇𝑠 and 𝜇′

𝑠) with a volume fraction of 20% at different wavelengths and diameters.
at different wavelengths and diameters with a volume fraction of 20%. 
Here, the RD values greater than 50 were capped at 50 to ensure clarity 
in the plots. All four cases demonstrated that the RD values strongly 
depend on the wavelength within the diameter range of 100–300 nm. 
In the other diameter range, however, the RD values are less dependent 
on the wavelength. Here, we discuss the RD results by the diameter 
rather than the wavelength.

Fig.  5(a) shows that the RD values for the second-order expan-
sion exceed 20%, even over a large diameter range. This indicates 
that the second-order approximation does not accurately describe the 
scattering coefficient. In contrast, the third-order results in Fig.  5(b) 
show that the RD values are below 10% for diameters larger than 
approximately 300 nm, suggesting that the third-order approximation 
is valid for the scattering coefficient. Figs.  5(c) and (d) show that 
the RD values for both the second- and third-order results of the 
reduced scattering coefficient are below 10% for diameters larger than 
approximately 300 nm. These results suggest that the second-order 
approximation adequately describes the interference contributions. The 
second- and third-order expansions account for the contributions of 
6 
the excluded volume and the effective attractive force, respectively. 
While the scattering coefficient mainly reflects both contributions, the 
reduced scattering coefficient primarily reflects the excluded volume 
contribution.

3.3. Expansion coefficients of the two scattering coefficients

As shown in Fig.  4(a), at high volume fractions, the second-order 
expansions are smaller than the first-order expansions (IST with no 
interference treatment). This result suggests that the expansion coef-
ficient of 𝑄𝑠

1 is negative, meaning the destructive interference con-
tribution. Also, the larger values of the third-order expansion than 
the second-order expansion indicate the positive value of 𝑄𝑠

2 with the 
constructive interference contribution. Here, we examine the expansion 
terms of 𝑄𝑠

𝑗𝜂
𝑗 and 𝑄𝑝

𝑗𝜂
𝑗 in Fig.  6, rather than considering the expansion 

coefficients alone. As shown in the expansion forms of the two scatter-
ing coefficients (Eqs. (15) and (17)), each term is the product of the 
expansion coefficient and the power 𝜂𝑗 .
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Fig. 6. Expansion terms, 𝑄𝑠
𝑗𝜂

𝑗 and 𝑄𝑝
𝑗 𝜂

𝑗 , of the scattering and reduced scattering coefficients (Eqs. (16) and (18)) at different orders and diameters with the 
wavelengths of 600 nm and 1000 nm (the size-parameter ranges of 0.7−5.6 and 0.4−3.3) for 𝜂 = 0.2.
Fig. 7. Integrands of the expansion coefficients, 𝑄𝑠
𝑗 and 𝑄𝑝

𝑗 , as a function of the scattering angle 𝜃 at the particle diameter of 300 nm and the wavelength of 
600 nm. (a) Weight functions, (b) the first-order expansion case, and (c) the second-order expansion case. Here, the integration values over the scattering angle 
are 𝑄𝑠

1 = −3.14 (negative), 𝑄𝑝
1 = −0.32 (slightly negative), 𝑄𝑠

2 = 4.02 (positive), and 𝑄𝑝
2 = −0.23 (slightly negative).
Figs.  6(a) and (b) show the diameter dependence of the expansion 
terms for the scattering coefficient up to the fourth order at wave-
lengths of 600 nm and 1000 nm, respectively. Here, cool and warm 
colors represent negative and positive values, respectively, and 𝜂 is set 
as 0.2. The 𝑄𝑠

𝑗𝜂
𝑗 values are negative for odd orders and positive for 

even orders, indicating that the odd- and even-order terms contribute as 
destructive and constructive interference, respectively. In the diameter 
region smaller than approximately 300 nm, the results at each order 
vary with diameter, whereas in the larger diameter region, they remain 
nearly constant. The diameter dependence of the expansion terms 
explains the trend of the scattering coefficient expansion, as shown in 
Figs.  5(a) and (b). At higher orders, the 𝑄𝑠

𝑗𝜂
𝑗 values become smaller, 

indicating that the expansion is approaching convergence. Figs.  6(c) 
and (d) show that the 𝑄𝑝

𝑗𝜂
𝑗 results exhibit different trends in expansion 

order compared with the 𝑄𝑠
𝑗𝜂

𝑗 results, except for the first-order case. 
For instance, at a wavelength of 1000 nm, the 𝑄𝑝

2𝜂
2 values are positive 

in the diameter region smaller than 175 nm but negative in the larger 
diameter region. In contrast, the 𝑄𝑠

2𝜂
2 values remain positive through-

out. The 𝑄𝑝
𝑗𝜂

𝑗 values are slightly negative across a wide range of orders 
and diameters, indicating that destructive interference predominates in 
the reduced scattering coefficient over constructive interference.

We investigate the reason behind the difference in expansion order 
trends between 𝑄𝑠

𝑗 and 𝑄
𝑝
𝑗  by analyzing their integrands (i.e., the right-

hand sides of Eqs. (16) and (18)) as functions of the scattering angle 
𝜃. We focus on the first- and second-order results for a diameter of 
300 nm and a wavelength of 600 nm. The difference in the integrands 
between 𝑄𝑠

𝑗 and 𝑄
𝑝
𝑗  lies in the weight function. As shown in Fig.  7(a), 

the weight function, sin 𝜃(1 − cos 𝜃), in the integrand of 𝑄𝑝
𝑗  peaks at 

a larger scattering angle than sin 𝜃 in the integrand of 𝑄𝑠
𝑗 , due to the 

half-angle identity 1 − cos 𝜃 = 2 sin2(𝜃∕2). This peak shift significantly 
reduces the integrand (the product of 𝑃 𝑆  and the weight function) 
𝑀𝑖𝑒 𝑗

7 
in the forward-scattering region (0 < 𝜃 ≲ 30◦), and moderately in 
the intermediate angle range (30◦ ≲ 𝜃 ≲ 60◦). As shown in Fig. 
7(b), the prominent negative peak in the integrand of 𝑄𝑠

1 at 𝜃 ∼ 22◦

becomes suppressed in the integrand of 𝑄𝑝
1 due to the difference in the 

weight functions. This suppression leads to a decrease in the 𝑄𝑝
1 value 

(obtained via integration over the scattering angle) compared to the 
𝑄𝑠

1 value. Fig.  7(c) shows that the integrand of 𝑄𝑠
2 exhibits a positive 

peak at 𝜃 ∼ 15◦, originating from the SSF peak in the forward scattering 
region, which represents the effective attractive contribution, as shown 
in Fig.  3(c). This positive peak in the integrand of 𝑄𝑠

2 is significantly 
reduced to less than 1.5 in the integrand of 𝑄𝑝

2, owing to the weight 
function. Meanwhile, the negative peak at 𝜃 ∼ 45◦ in the integrand of 
𝑄𝑠

2 is only moderately reduced in the integrand of 𝑄
𝑝
2, remaining greater 

than 1.5. Consequently, the value of 𝑄𝑝
2 is slightly negative (−0.23), 

whereas that of 𝑄𝑠
2 is positive (4.02).

3.4. Examination of the experimental data

Finally, we apply the developed decomposition approach to ex-
perimental data from monodisperse colloidal suspensions. We used 
data of silica and polystyrene particles suspended in water, specifically 
for the scattering and reduced scattering coefficients, as reported by 
J. D. Nguyen et al. [18] and L. Bressel et al. [13], respectively, as shown 
in Fig.  8. In the numerical calculations, the refractive indices of silica 
and polystyrene were set to 1.44 at a wavelength of 1297 nm and 1.57 
at 982 nm, respectively, based on the corresponding references.

The top panels of Fig.  8 show that the DST predictions agree well 
with the measured scattering and reduced scattering coefficients across 
the entire volume fraction range. In all cases except for case (c), the 
expansion results up to the fourth order (𝑁𝑒 = 3) show good agreement 
with both the measurement data and the DST results. This observation 
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Fig. 8. Investigation of experimental data at the two diameter cases: (a) and (b) silica particles in water suspensions for the scattering coefficient by J. D. Nguyen 
et al. [18], (c) and (d) polystyrene particles in water suspensions for the reduced scattering coefficient by L. Bressel et al. [13]. (Top) Dependence on volume 
fraction. The orange-shaded area indicates the RD region within 10% deviation from the measurement data. (Bottom) Expansion terms. The other details are the 
same as in Figs.  4 and 6.
suggests that the dominant interference contributions are captured in 
the 𝑁𝑒 = 3 case, and that the dominant pair correlation occurs at inter-
particle distances up to 3𝑑. In case (c), however, a fifth-order expansion 
is required to achieve agreement with the measurement data. This case 
corresponds to a small-diameter condition, where multiple interference 
contributions become more significant, as discussed in Figs.  4(a) and 
(b). The bottom panels of the figure show that the absolute values of the 
expansion terms are larger for the smaller-diameter cases ((a) and (c)) 
than for the larger-diameter cases ((b) and (d)). In case (c), the absolute 
values are the largest among all cases, indicating the most significant 
interference contributions. The expansion-order dependence of 𝑄𝑝

𝑗𝜂
𝑗 is 

more complex, particularly in the second and third orders, compared 
to the more regular behavior observed in the 𝑄𝑠

𝑗𝜂
𝑗 results.

4. Conclusions

We investigated the far-field interference effects on the light scatter-
ing properties of concentrated colloidal suspensions by decomposing 
these properties through a volume fraction expansion. We calculated 
the two scattering coefficients using the DST with hard-sphere interac-
tion and series expansions up to the fifth order over volume fractions 
ranging from 0.1% to 25%, particle diameter from 100 to 800 nm, 
and wavelengths from 600 to 1000 nm. Our numerical calculations 
show that, for the reduced scattering coefficient, the second-order 
expansion agrees well with the DST results for particle diameters larger 
than approximately 300 nm. This result indicates that the dominant 
contribution arises from destructive interference due to the excluded 
volume between particles, a manifestation of particle correlations. For 
the scattering coefficient, the third-order expansion agrees with the DST 
results in the larger-diameter region. This agreement reveals a hidden 
constructive-interference contribution arising from the effective attrac-
tive force, even in the absence of a direct attractive force. For smaller 
diameters, higher-order expansions are required to accurately repro-
duce the DST results, due to the involvement of multiple interference 
effects in both scattering coefficients. For the scattering coefficient, 
odd-order terms of expansion correspond to destructive interference, 
while even-order terms correspond to constructive interference. In 
contrast, the correspondence in the reduced scattering coefficient is 
more complex and depends on both particle diameter and wavelength 
due to the weight function. The developed decomposition approach 
can be applied to measured light scattering data to analyze multiple 
interference contributions.

As a future direction, it is important to extend the developed ap-
proach to other colloidal systems, such as polydisperse suspensions [42] 
and agglomerated systems involving direct attractive forces between 
8 
particles. Among the electromagnetic theories for colloidal systems, 
effective medium approximations (EMAs; mixing rules) have also been 
widely employed. The EMAs can be derived from the FLEs via the 
Born series [43,44]. This fact implies a relationship between the EMAs 
and the DST, as well as the possibility of applying the volume-fraction 
expansion to the EMAs. Exploring this possibility remains a challeng-
ing task for future research. Another direction for future work is to 
investigate interference contributions under conditions in which FLEs 
or full-wave calculations [45] are required instead of the DST, such as 
in super-dense suspensions or for particles with high refractive indices.

Our findings offer a quantitative understanding of interference ef-
fects on light scattering properties, which could not be fully analyzed by 
DST calculations alone [13,17,18]. They also contribute fundamental 
insights toward the development of nanotechnological methods for 
non-destructive evaluation of particle properties using scattered light.
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