Title	2006年度 グラフ理論講義 ノート		
Author(s)	井上, 純一		
Issue Date	2006		
Doc URL	http://hdl.handle.net/2115/15412		
Rights(URL)	http://creativecommons.org/licenses/by-nc-sa/2.1/jp/		
Туре	learningobject		
Note(URL)	http://www005.upp.so-net.ne.jp/j_inoue/index.html; http://chaosweb.complex.eng.hokudai.ac.jp/-j_inoue/		
Additional Information	There are other files related to this item in HUSCAP. Check the above URL.		
File Information	GraphTheory06_slide3.pdf (第3回講義スライド)		

グラフ理論 #3

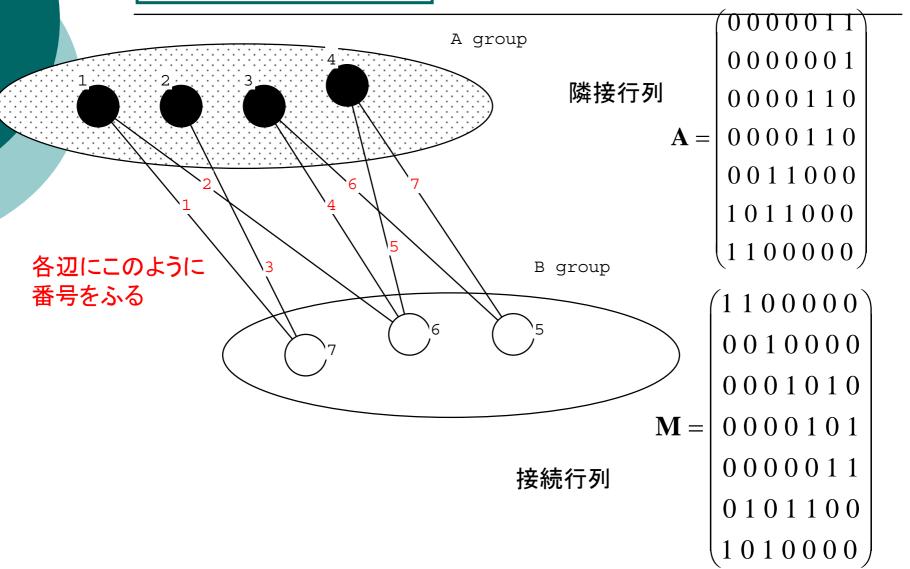
第3回講義 4月21日

--- いろいろなグラフの例とパズル ---

情報科学研究科 井上純一

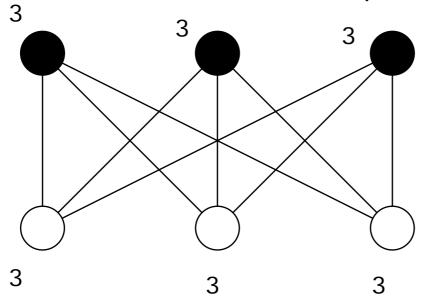
http://chaosweb.complex.eng.hokudai.ac.jp/~j_inoue/

演習問題2(1)の解答例



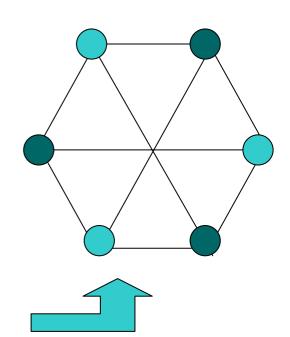
演習問題2(2)の解答例

(3,3,3,3,3,3)はグラフ的である。



完全二部グラフであれば良い

これを描いても正解



空グラフ

空グラフ (null graph): 辺集合が空であるグラフ

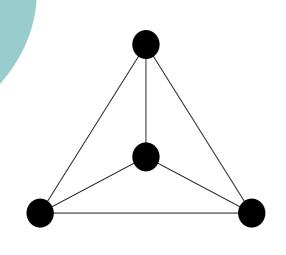
辺が無い

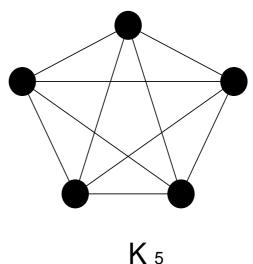
 N_4

n 点からなる空グラフを N_n と書く

完全グラフ

完全グラフ(complete graph): 相違なる2つの点が全て隣接しているグラフ





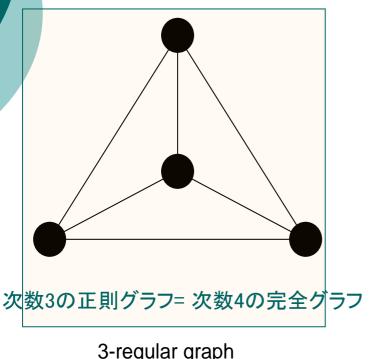
 K_4

$$_{n}C_{2}=\frac{n(n-1)}{2}$$

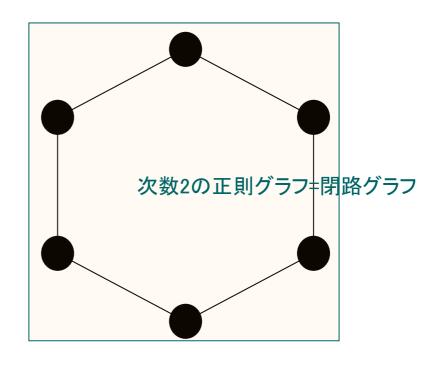
n点からなる完全グラフ の辺の本数 K_n

正則グラフ

r-正則グラフ (regular graph):どの点の次数も全て共通にrであるグラフ

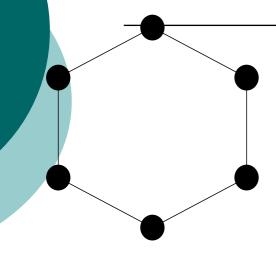


3-regular graph



2-regular graph

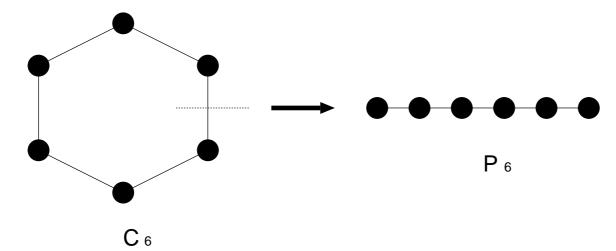
閉路グラフと道グラフ



閉路グラフ (cycle graph): 次数2の正則連結グラフ

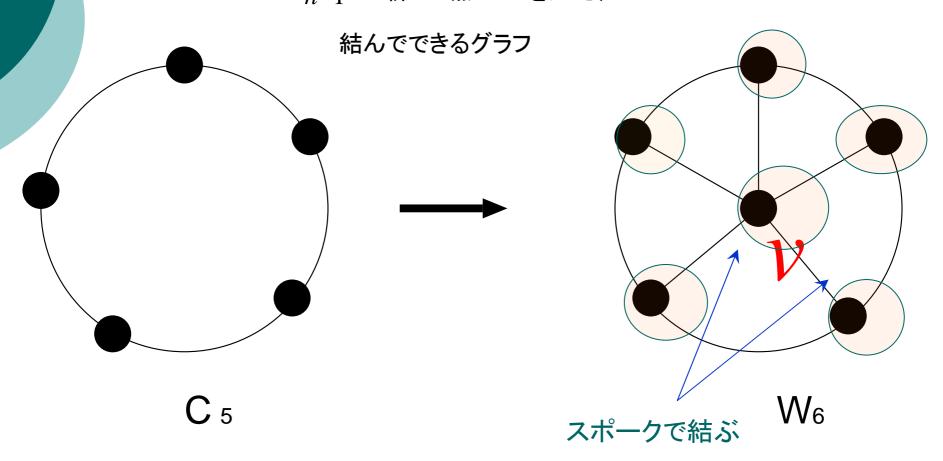
 C_6

道グラフ(path graph): 閉路グラフから一つの辺を除いて得られるグラフ

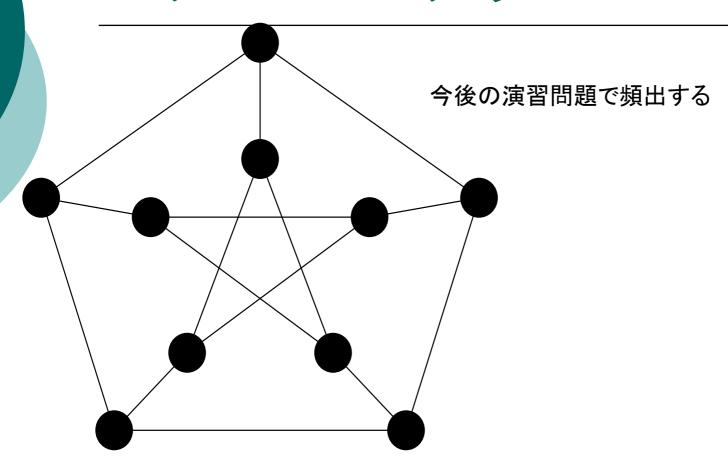


車輪

車輪(wheel): C_{n-1} に新しい点 $^{oldsymbol{
u}}$ を加え、 $^{oldsymbol{
u}}$ と他の全ての辺を



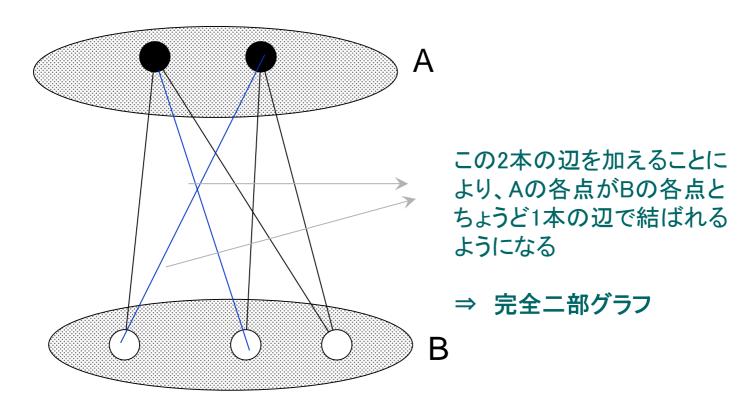
ピータースン・グラフ



ピータースン・グラフはハミルトン・グラフであろうか?

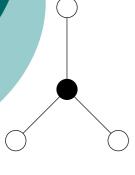
二部グラフ

二部グラフ(bipartite graph): グラフGの点集合を素な2つの集合A、Bに分割し、Gの全ての辺はAの点とBの点を結ぶようにしてできあがるグラフ

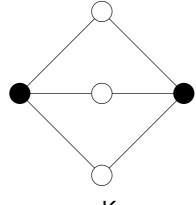


完全二部グラフ

完全二部グラフ (complete bipartite graph) : Aの各点がBの各点とちょうど 1本の辺で結ばれた二部グラフ

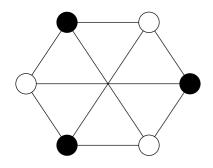


K 1,3

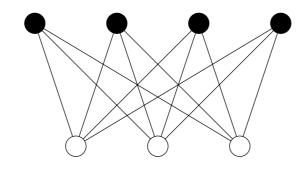


K 2,3

黒r個、白s個からなる完全二部グラフ



K 3,3



K 4,3



100 101 Q 3 110 111

001

000

k-立方体

k-立方体 (K-cube)

 $a_i = 0,1$ であるような1つの列ベクトル $(a_1, a_2, ..., a_k)$ に一つの点を対応させ、

一つだけ異なる成分を持つ二つのベクトル に対応する二つの点が辺で結ばれるような 正則二部グラフ

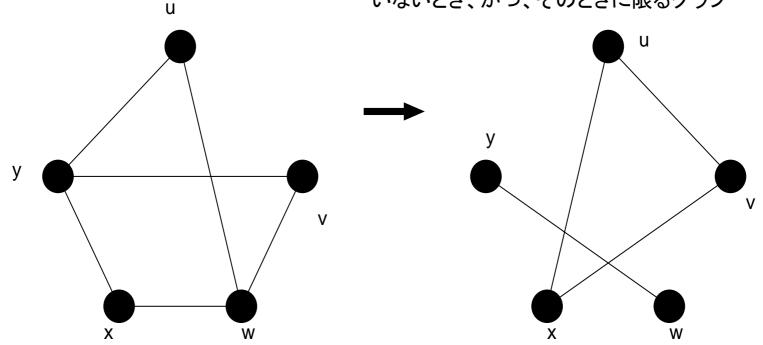
 Q_k

 2^k 個の点と $k2^{k-1}$ 本の辺を持つ

食い違う位置を指定した 場合に一つだけ成分の 異なるベクトルを選ぶ場合の数

単純グラフの補グラフ

単純グラフGの補グラフ (complement): 単純グラフGの点集合を持ち、2点が隣接 するのは、Gにおけるそれらの2点が隣接して いないとき、かつ、そのときに限るグラフ

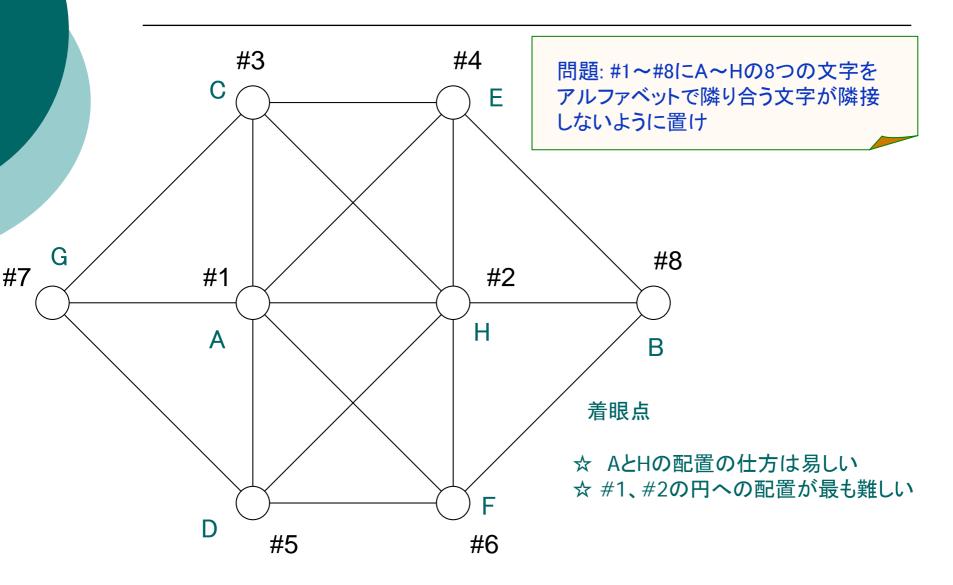


例)

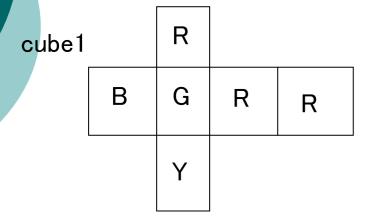
- ☆ 完全グラフの補グラフは空グラフ
- ☆ 完全二部グラフの補グラフは2つの完全グラフの和である

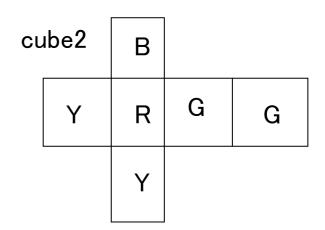
関連する話題を 次回の演習問題で 出題します。

8つの円の配置問題

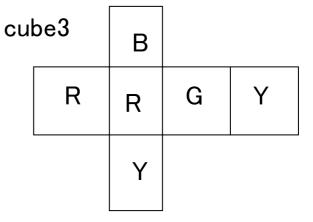


4つの立方体パズル

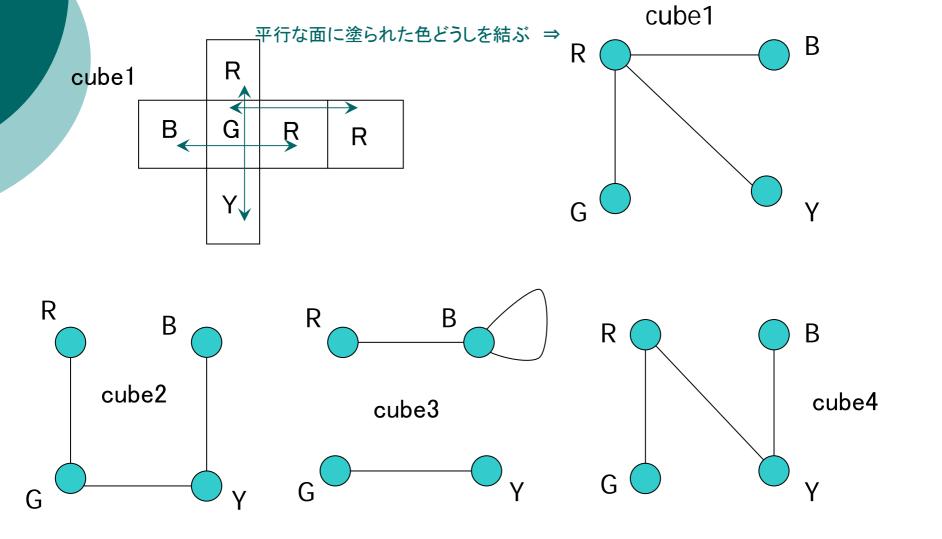




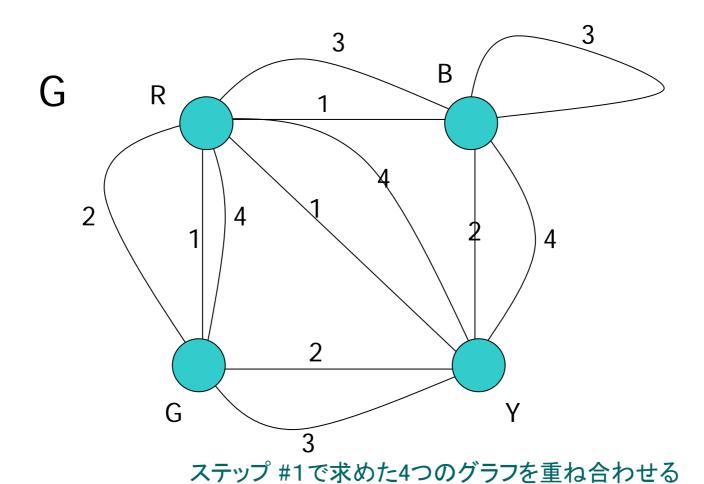
cube3		G		
	В	В	R	В
		Y		



解法のステップ #1

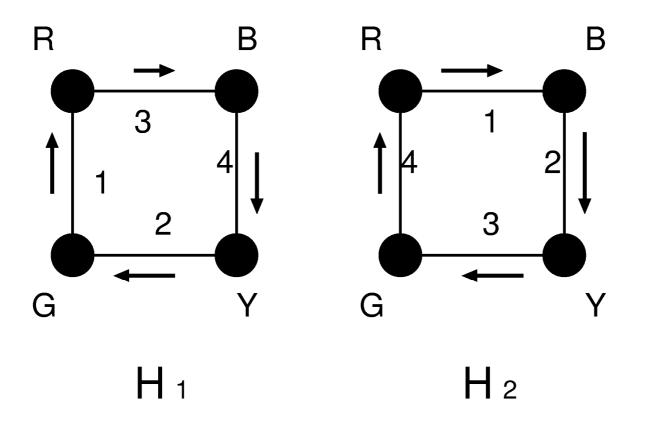


解法のステップ #2

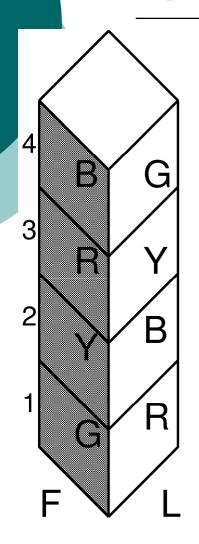


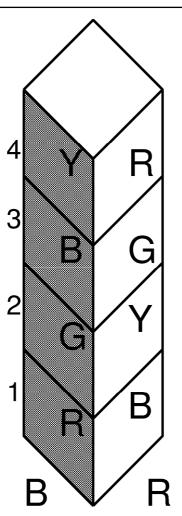
解法のステップ #3

各cubeの辺を1本ずつ含み、共通な辺が無く、次数2の正則グラフとしてGの部分グラフH1、H2を選ぶ



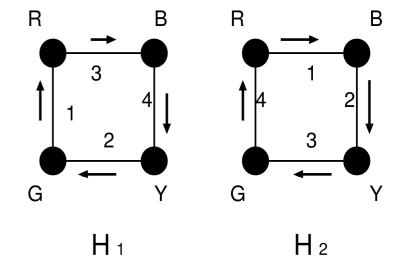
解法の最終ステップ



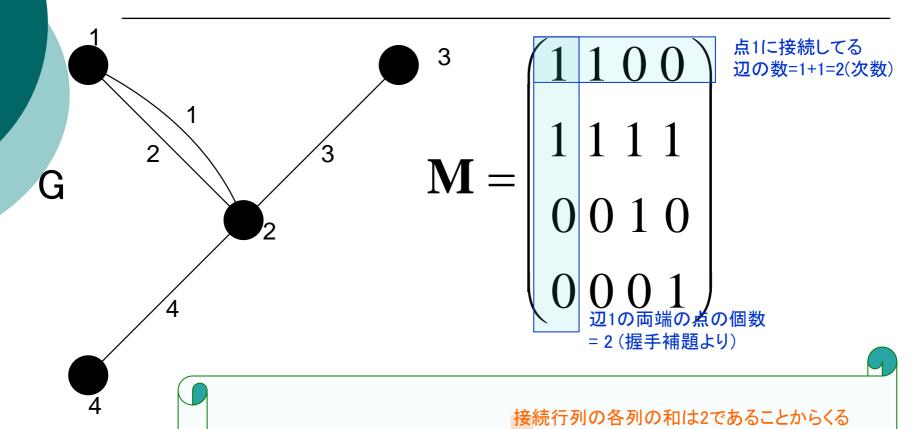


$H_1(FB), H_2(LR)$

を用いて、cube1、cube2、cube3、cube4 を積み上げる



例題3.1



両辺は接続行列 の成分の総和 を表している

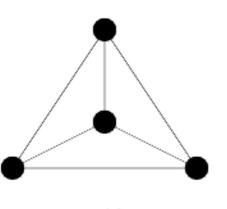
 $\deg(v) = 2\varepsilon(G)$

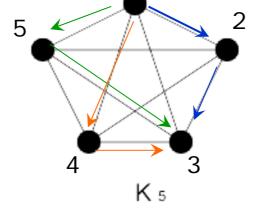
辺の数=接続行列の列の数

グラフGの次数和

 $v \in V(G)$

例題3.2





隣接行列 $\mathbf{A} = \begin{pmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 \end{pmatrix}$

K 4

これを一般化すると

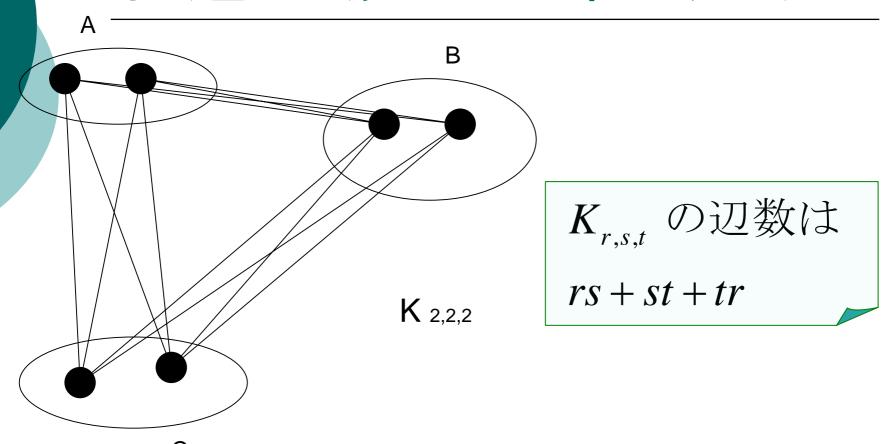
点1と点3を結ぶ長さ2の歩道の数 (43 3 3 3)

$$\mathbf{A}^2 = \begin{bmatrix} 3 & 4 & 3 & 3 & 3 \\ 3 & 3 & 4 & 3 & 3 \\ 3 & 3 & 3 & 4 & 3 \\ 3 & 3 & 3 & 3 & 4 \end{bmatrix}$$

 $\mathbf{A}^{\overline{K}}$

は点iと点jを結ぶ長さKの歩道の数に等しい

例題3.3(完全三部グラフ)



完全n部グラフに関連する問題を 次回の演習問題で出題します。