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Fig. S1. Bicontinuous phase separation structure of s-PA and its deformation under loading 

characterized by in-situ SAXS. (A) The illustration of the specimen used in in-situ SAXS tests. 

The rectangular sample (L0 = 7.5 mm, H0 = 16 mm, thickness 1.65 mm) was used. The loading 

strain rate is 1 s-1. (B) Typical 2D SAXS patterns under the uniaxial tensile ( = 1, 1.75, 7.25 are 

taken as examples). We can see from the patterns, with increasing stretch ratio , the phase 

networks become oriented along the stretching direction (schemed in the right figure). (C) 1D 

scattering profiles I(q) as a function of q at  = 1.75 in parallel (//) and perpendicular (⊥) to the 

stretch direction. Inset shows the sector regions for integrating the 1D scattering intensity. From 

the position of scattering peaks (q//,max and q⊥,max), we obtain the d-spacing change in the stretching 

direction (d//) and perpendicular direction (d⊥), by d// = 2/q//,max and d⊥ = 2/q⊥,max, respectively. 

(D) The d// and d⊥ as a function of . The d-spacing (d0) between adjacent soft regions or hard

regions in the undeformed gel is d0 ≈ 100 nm. When the gel is loaded to  > 1.75, the d// exceeds 

the detecting range. The microscopic deformation is obtained by d///d0 and d⊥/d0. Inset shows the 

d///d0 and d⊥/d0 as a function of the macroscopic stretch ratio . The orange lines stand for the 

prediction of affine deformation of the phase networks (for incompressible materials, the affine 

deformation follows d///d0 = λ and d⊥/d0 = λ-1/2). The data is extracted from ref (49). The d⊥/d0 

versus  curve can be divided into three regimes with the split points λaffine (black arrow) and λc 

(blue arrow). The λaffine (λaffine = 3.06) is determined by the critical point at which the microscopic 

deformation of the phase network begins to deviate from the predicted affine deformation. The λc 

(λc = 9.2) is determined by the point at which d⊥/d0 slightly increases with λ. According to our 

previous work (51), the percolated hard and soft phase networks deform equally at stretch ratio λ 

< λaffine (regime I), but the hard phase network sustains more stress due to high stiffness. At λ = 

λaffine, damage to the hard phase strands begins to occur as they carry most of the stress, and the 

contraction of the damaged hard phase strands exerts a large shear stress on the adjacent soft phase 
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strands. The load is transferred to adjacent hard-phase strands via the soft-phase strands (regime 

II). With increasing λ, more hard phase strands rupture until the shear stress is larger than the 

strength of the soft phase strands, resulting in the soft phase network rupture at λ = λc. The rupture 

of the soft phase network results in a catastrophic fracture of the whole sample immediately (regime 

III). Above the λ = λc, the d⊥/d0 increases with λ since the rupture of soft phase strands destroys the 

ordering of neighboring hard phase strands. Therefore, the λaffine denotes the onset of damage to 

the hard-phase network, and the λc denotes the onset of damage to the soft-phase network. 



Fig. S2. Dynamic mechanical behavior of the s-PA gel. Frequency (ω) dependence of the storage 

modulus G′, loss modulus G″, and loss factor tanδ. The vertical dotted line indicates the angular 

frequency at ω = 2π̇ (45) for the strain rate of cyclic loading ̇ = 1 s−1. G’ does not reach the plateau 

modulus at the high frequency limit, indicating that the lifetime of ionic bonds (s) is short, beyond 

our observation window (s < 10-5 s). The data is adopted from ref (47).  
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Section S1. Cyclic training behaviors of soft materials with or without hierarchical 

structure 

To illustrate the effect of the hierarchical structure in cyclic training, we subjected two control 

samples to cyclic loading (stretching): one with very weak phase separation (w-PA gel) and another 

without phase separation but with good self-healing properties (PPEA elastomer). 

Fig. S3. Comparison of fracture behavior in strong (s-PA) and weak (w-PA) phase-separated 

PA gels under monotonic and cyclic stretching. (A) SAXS result for s-PA and w-PA. s-PA 
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exhibits a pronounced density contrast (proportional to the modulus contrast) tween its hard and 

soft phase domains, while w-PA displays a substantially weak density contrast between the two 

phases. (B) Pure shear geometry used for monotonic and cyclic stretching (L0 = 50 mm, and H0 = 

10 mm). (C) The stress-stretch (S-S) curve for w-PA gel. (D) The S-S curve for s-PA gel. In figure 

C and D, the black "X" denotes sample fracture under monotonic stretching. The red "X" indicates 

sample fracture under cyclic stretching condition. The red dots denote the sample capable of 

enduring Ntr = 104 cycles at tr equal to the corresponding  without fracture. (E) Evolution of 

loading-unloading curves with training cycle (Ntr) at tr = 8.5 for s-PA. (F) Evolution of loading-

unloading curves with training cycle (Ntr) at tr = 9.1 for s-PA. 



Fig. S4. Dynamic mechanical behavior, SAXS result, and cyclic training behavior of the 

PPEA elastomer. (A) Chemical structure of ethylene glycol phenyl ether acrylate (PEA) monomer. 

The PPEA elastomer is crosslinked by 0.1 mol% MBAA in relative to the monomer. (B) Frequency 

(ω) dependence of the storage modulus G′, loss modulus G″, and loss factor tanδ. The vertical 

dotted line indicates the angular frequency at ω = 2π̇ for the strain rate of cyclic loading ̇ = 0.5 

s−1. (C) SAXS result. The SAXS result shows no phase separation  and the WAXS result shows no 

crystallization in the PPEA elastomer (55). These results suggest that no hierarchical structure 

formed in PPEA elastomer. (D) The S-S curve for PPEA elastomer. The black "X" denotes sample 

fracture under monotonic stretching. The red "X" indicates sample fracture under cyclic stretching 

condition. The red dots denote the sample capable of enduring Ntr = 104 cycles at tr equal to the 

corresponding  without fracture. 

0.0

0.5

1.0

1.5

2.0

10-7 10-5 10-3 10-1 101 103 105
102

103

104

105

106

107

w (rad/s)
ta

n
d

G
',
 G

''
 (

P
a

)
MBAA

Crosslinker 0.1 mol%Monomer

PEA

0.0 0.2 0.4 0.6
100

101

102

103

104

In
te

n
s
it

y
 (

a
rb

.u
n

it
)

q
 
(nm

-1
)

0 1000 2000 3000 4000
Intensity

PPEA

CB

A

1 2 3 4 5 6 7
0.0

0.5

1.0

1.5

2.0

s
tr

e
s
s

 (
M

P
a
)

λ 

PPEA elastomer 

Non-phase separation

Fractured 

during cyclic 

training

D



Fig. S5. Cyclic training of PPEA elastomer. The same pure shear geometry as Fig. 2A was used 

for the training. Training was performed at 24 C with an initial strain rate ̇ = 0.5 s−1. (A) Evolution 

of loading-unloading curves with training cycle (Ntr). (B) Loading-unloading curves for a trained 

gel resting for trest. (C) Wex as a function of time (red: training, blue: detraining). (D) res as a 

function of time (red: training, blue: detraining). Training at tr = 2.1 for Ntr = 104 cycles is taken 

as an example. We can observe that the training curves reach the steady state rapidly, and both the 

Wex and res fully recover quickly during detraining. This suggests that the PPEA elastomer does 

not possess a long-term memory of the training effect. 
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Fig. S6. Prony series fitting for Wex versus Ntr curve of s-PA hydrogel and PPEA elastomer 

trained at λtr = 2.1 and Ntr = 104 cycles. (A) Comparison of the fitting curve by the two-term (n 

= 2) and three-term (n = 3) Prony series fitting of s-PA hydrogel. (B) Two-term (n = 2) Prony series 

fitting for PPEA elastomer. The fitting equation is 𝑦 = 𝑦0 + ∑ 𝐴𝑖𝑒
−x/𝑡𝑖

𝑛

𝑖=1
, where y corresponds 

to Wex, x is Ntr, ti is the characteristic training cycles Ni, and y0 is the equilibrium Wex of the cyclic 

training. From the fitting we obtained training cycle parameters N1(~0.6) and N2(~15) for Wex of the 

PPEA. 
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Table S1. The comparison of training time and full recovery time of s-PA gel and PPEA 

elastomer. 

Material λtr 
Total training 

time 

Full recovery time 

for Wex
a 

Full recovery time 

for λres
b 

PPEA elastomer 1.3 14.2 ks 1147 s 67 s 

PPEA elastomer 1.8 35.2 ks 3847 s 547 s 

PPEA elastomer 2.1 45.1 ks 7447 s 547 s 

s-PA gel 1.3 8.7 ks 18247 s 7447 s 

s-PA gel 1.7 17.8 ks 68647 s 18247 s 

s-PA gel 2.1 26.1 ks >86647 s 18247 s 

a Full recovery time for Wex represents the time it took for Wex(trest) to recover to Wex0 which was 

the work of extension of the first loading to corresponding tr. b Full recovery time for λres(trest) 

represents the time it took for λres(trest) to recover to a value of 1. 



Section S2. The Prony series fitting of training curves 

The Wex and res in training process are obtained from the loading-unloading curves as shown 

in Fig. 2 (B, C and D). Fig. S7B shows that Wex and res change rapidly at the beginning training 

cycles and then reach the plateau. This is universal for training at varied tr. As shown in fig. S7C, 

all the normalized Wex/Wex0 (Wex0 is the work of extension of the first loading to corresponding tr) 

versus Ntr curves exhibit similar behavior, that the required energy to deform the gel to a certain 

stretch ratio (tr) decreases with training cycle and finally almost reaches saturation.  

To elucidate the contribution of the hierarchy structure to training process, we use the 

generalized Maxwell model (Prony series) to analyze the plot of Wex versus Ntr. The Prony series 

consists of a spring and n Maxwell elements connected in parallel (68, 69), which is a 

phenomenological model commonly used to fit the relaxation dynamics of viscoelastic material 

such as biological tissues (70), elastomers (69, 71), hydrogels (72, 73), etc. Here, we try to use the 

Prony series to fit the reduction of energy required for a preset tr during training, we rewrite the 

Prony series as 

/

1

( ) tr i

n
N N

tr i

i

W N W W e
−



=

= +  (S1) 

where W(Ntr) is the Wex at the Ntr, W is the equilibrium Wex of the cyclic training, Ni are the 

characteristic training cycles, Wi are training strengths correlated to the reduction of Wex, and n is 

the series order. We find that n = 3 were sufficient to fit the Wex versus Ntr curves (fig. S6A). Fig. 

S7D shows an example of the fitting result at tr = 2.9 and total Ntr = 104 cycles. From the fitting 

results, we obtain three characteristic training cycles N1 = 1 cycle, N2 = 18 cycle, N3 = 1003 cycle, 

with the training strengths W1 = 49.3 kJ/m3, W2 = 29.8 kJ/m3, W3 = 19 kJ/m3, and W = 31.1 kJ/m3. 

The Prony series fitting parameters of gel training at varied tr for Ntr = 104 cycles are presented 

in fig. S7E and the normalized Wi/Wex0 and W/Wex0 are shown in fig. S7F. The characteristic 

training cycles N1(~1), N2(~20), N3(~1000) are shown in Fig. 3A. By comparing the characteristic 



times with the non-phase-separated PPEA and rheological result, we assign N1(~1), N2(~20), 

N3(~1000) to short scale ionic breaking, the local adaption of transient networks, and the adaption 

of hard phase network, respectively. The decrease of W/Wex0 and W3/Wex0 at affine < tr < c 

support that the broken of hard phase network (with longest characteristic training time) weakens 

the training effect. The characteristic training times, 1, 2, 3, are obtained from the product of Ni 

and the corresponding training time per cycle. 1, 2, 3 in three different orders of magnitude 

increase with tr (fig. S7G). But the slopes of i versus tr change around the affine, indicating that 

the training dynamics are affected by the damage in the hard phase network.  



Fig. S7. Evolution of work of extension (Wex) with training cycle Ntr of s-PA gel and the Prony 

series fitting. (A) Pure shear geometry (L0 = 50 mm, H0 = 10 mm) and triangle loading profile for 

cyclic training. During cyclic training, the maximum and minimum stretch ratios are kept at pre-

set values tr and 1, respectively. (B) The Wex and res as a function of Ntr. Training at tr = 2.9 is 

taken as an example. (C) Normalized Wex/Wex0 versus Ntr for the samples tested at varied tr. Wex0 

is work of extension of the first loading to tr. Inset shows the plots in a logarithmic scale. (D) 

Fitting the Wex versus Ntr curve by the Prony series. tr = 2.9 is taken as an example. The number 

of terms in the Prony series is picked to be n = 3. (E) The Prony series fitting parameter Wi, W 

and Wex0 as a function of tr. (F) Normalized Prony series fitting parameter Wi/Wex0 and W/Wex0 

as a function of tr. (G) The characteristic training times 1, 2, 3 of Wex (product of characteristic 

training cycles Ni and time consumption per cycle tcycle) as a function of tr. The vertical dotted line 

in F-G indicates affine. The dashed lines are a guide for the eyes. The error bar (tr = 2.1 to 3.7) is 

standard error (SE) from at least three measurements. 
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The res increases sharply with Ntr at the beginning of the training and then reach a steady state 

(fig. S8A). To study the dynamics of residual stretch ratio res during training, we use the Prony 

series to fit the normalized res versus Ntr curves. The res is normalized as 

tr
tr

( ) ( )
( )

(0) ( )

res res

res res

N
R N

 

 

− 
=

− 
, where res(Ntr) is the residual stretch ratio at cycle Ntr, res() is the 

residual stretch ratio at the steady state of training (fig. S8B). res(0) = 1 denotes the res at 

undeformed state. The R(Ntr) denotes the relative training effect away from the steady state. Thus, 

the Prony series for fitting R(Ntr) is rewritten as  

/

1

( ) tr i

n
N N

tr i

i

R N R R e
−



=

= +  (S2) 

Where R is close to 0 since Ntr = 104 already reaches the steady state, Ri are training strengths for 

res, and Ni are the characteristic training cycles of res. Fig. S8C shows an example of the fitting

result (tr = 2.9) using n = 3. The obtained characteristic training cycles are N1 = 1, N2 = 19, and N3

= 962, with the fitting parameters R1 = 0.51, R2 = 0.27, R3 = 0.21, and R = 0.01.  

The characteristic training cycles Ni of res for s-PA gel are shown in Fig. 3B, and the 

corresponding fitting parameters are shown in fig. S8D. As expected, the R is close to 0. The 

training strength of the first term R1, corresponding to N1  1, has a largest value than others as the 

first training cycle induces a large res by breaking the ionic bonds and elongating polymer network. 

R1 decreases while the second and third term R2, R3 increase slightly with tr at tr < affine. This 

could be correlated to a higher oriented phase networks formed at larger tr, and the contribution 

from the long-term adaptation increasing. At affine < tr < c, all the parameters almost keep 

constant due to the damage of the hard phase network.  



Fig. S8. Evolution of residual stretch ratio (res) with training cycle Ntr of s-PA gel and the 

Prony series fitting. (A) The residual stretch ratio res versus Ntr for the samples trained at varied 

tr. (B) res at the steady state of training (res()) as a function of tr. (C) Prony series fitting of

normalized res. Here tr = 2.9 is taken as an example. The res is normalized as
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. The res(0) = 1 denotes the res at the undeformed state. (D) The Prony 

series fitting parameter Ri and R as a function of tr. The vertical dotted line indicates affine. The 

dashed lines are a guide for the eyes. The error bar (tr = 2.1 to 3.7) is SE from at least three 

measurements. 
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Fig. S9. The characteristic training cycles of hysteresis energy density Uhys of s-PA gel as a 

function of tr. The Uhys versus Ntr profiles are fitted by tr /

hys tr hys hys

1

( ) , , i

n
N N

i

i

U N U U e
−



=

= + , where 

Uhys(Ntr) is the Uhys (the area between the load and unload curves) at the cycle Ntr, Uhys, is the Uhys 

in the steady state of cyclic loading, Ni are the characteristic training cycles, Uhys,i are training 

strengths, and n is the series order, n = 3. The vertical dotted line indicates affine. The error bar (tr 

= 2.1 to 3.7) is SE from at least three measurements. 
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Section S3. The Prony series fitting of detraining curves 

Detraining experiment is performed by resting the trained sample at 24 ℃ for varied time trest. 

As schemed in fig. S10A, the trained s-PA gels (trained at tr for Ntr = 104 cycles) are allowed to 

rest at a strain-free state for different times trest, then are loaded to tr to detect the self-recovery 

efficiency. The longest trest we tracked are 87 ks for λtr < 4.1, and 500 ks for λtr > 4.1 (ks means 

1000 seconds). We find that the change of mechanical behavior during rest is similar to detraining 

of muscles, that the temporary memories formed during training process are gradually forgotten 

during rest. As an example, Fig. 2C shows the loading-unloading curves at trest after the sample 

being trained at tr = 3.7 for Ntr = 104. The gel self-recovers to its original length, showing no 

residual strain (res = 1) after resting for trest = 25 ks, while the softening of stress and loss of 

hysteresis loop still slightly remain after resting for 87 ks. Then, we systematically study the effect 

of training intensity (tr) on the relaxation dynamics when the training duration is fixed at Ntr = 104. 

Fig. S10B plots the normalized work of extension Wex(trest)/Wex0 as a function of trest for several 

representative tr, tr = 2.9, 3.7 and 7.1. Note that the tr = 2.9 is smaller than the affine, tr = 3.7 is 

above the affine, and tr = 7.1 is far beyond the affine. It shows that Wex(trest)/Wex0 increases rapidly 

at the beginning of rest and gradually approaches to 0.9, 0.8 and 0.6 for tr = 2.9, 3.7 and 7.1, 

respectively, after a long trest. In contrast, the residual stretch ratios res(trest) of all the trained 

samples recover to 1 during the rest process in our observation time scale (fig. S11A). These 

detraining curves show that detraining dynamics become slower after suffering a higher training 

intensity tr.  

To clarify the difference in dynamics between the Wex(trest) and res(trest) during detraining, we 

also use the Prony series to fit the detraining curves. First, the Prony series is used to fit the 

normalized Wex(trest), that is 0

0

( )
( ) ex rest ex

rest

ex

W t W
w t

W W

−
=

−
, where Wex0 and W are the Wex of the first 

loading and equilibrium Wex in training at tr, respectively. The w(trest) = 1 means no detraining, 



and w(trest) = 0 means full recovery during rest. To fit the normalized w(trest), the Prony series is 

rewritten 
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= +  (S3) 

where w is the ratio of irrecoverable part within the maximum observation trest, wi are detraining 

strengths of Wex(trest), and f,i are characteristic detraining times, correlated to the forgetting rate of 

the training effect. Same as the fitting applied in training process, the series order n = 3 is used. 

Taking the gel trained at tr = 3.7 for Ntr = 104 as an example, fig. S10C shows that n = 3 gives an 

excellent fitting (R2 = 0.999) for the detraining curve. The characteristic detraining times are f,1 = 

42.8 s, f,2 = 916.4 s, and f,3 = 12170.9 s with the detraining parameters w1 = 0.11, w2 = 0.17, w3 = 

0.42, and w = 0.29. 

The detraining curves of Wex(trest) of the gels trained at varied tr were fitted by Eq. S3. The 

detraining strength wi is shown in fig. S10D, and the characteristic detraining times f,1, f,2, f,3 of 

Wex(trest) as a function of tr is shown in fig. S10E. The wi slightly decrease with tr, and have an 

order of w3 > w2 > w1, indicating that the long-term relaxation due to the mesoscale phase networks 

contributes more than the short-term relaxation due to the transient network. Expectedly, the 

irrecoverable term w increases with tr at affine < tr < c, indicating an increased damage of the 

hard phase network. 



Fig. S10. Prony series fitting of Wex(trest) versus trest curves of detraining process for s-PA gel. 

(A) Experimental protocol for detraining. After resting for trest, the trained gels (trained at tr for

Ntr = 104 cycles) are reloaded to the corresponding tr to detect the recovery efficiency. (B)

Evolution of Wex(trest)/Wex0 as a function of rest time trest after cyclic training under λtr = 2.9, 3.7

and 7.1 for Ntr = 104. Inset shows the logarithm plots. (C) Prony series fitting of normalized

Wex(trest). Here tr = 3.7 for Ntr = 104 is taken as an example. The Wex(trest) is normalized as

rest 0
rest
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w( ) ex ex

ex

W t W
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−
, where Wex(trest) is the Wex for deforming the trained gel to the 

corresponding tr after resting for trest. Wex0 and W are the Wex of the first loading and equilibrium 

Wex for training at tr, respectively. The w(trest) versus trest denotes forgetting curve. (D) The Prony 

series parameters wi and w versus tr. (E) The characteristic detraining time (forgetting time) f,1, 

f,2, and f,3 of Wex(trest) as a function of tr. The vertical dotted line indicates affine. The dashed 

lines are a guide for the eyes. The error bar (tr = 2.1 to 3.7) is SE from at least three measurements. 
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Then, the Prony series is used to fit the detraining process of the normalized res(trest), which is

( )
( )

( )

res rest
f rest

res

t
R t
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=


. Now the Prony series is rewritten as 
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Note that, due to all the res(trest) can recover to pristine state, there is no infinity term in Eq. S4. 

Rf,i are the detraining strengths of res(trest), and f,i are the characteristic detraining time of res(trest). 

Figure S11B shows one example of the fitting result of normalized residual stretch ratio Rf(trest) at 

tr = 3.7 using n = 3. The good fitting (R2 = 0.994) gives characteristic detraining times f,1 = 1 s,

f,2 = 119.9 s, and f,3 = 4630.9 s with the detraining parameters Rf,1 = 0.34, Rf,2 = 0.28, Rf,3 = 0.36. 

The detraining curves of res(trest) of the gel trained at varied tr were fitted by Eq. S4. The 

detraining strengths Rf,i are shown in fig. S11C and the characteristic detraining times f,1, f,2, f,3 

of res(trest) as a function of tr is shown in fig. S11D. The three fitting parameters Rf,i have a similar 

value (around 0.3), and depend little on the training tr. This indicates that the structures with varied 

length scales almost contribute equal to the detraining strengths of res. 



Fig. S11. Prony series fitting of res(trest) versus trest curves of detraining process for s-PA gel. 

(A) Evolution of λres(trest) as a function of rest time trest after cyclic training under λtr = 2.9, 3.7 and

7.1 for Ntr = 104. Inset shows the logarithm plots. (B) Prony series fitting of normalized λres(trest).

Here tr = 3.7 for Ntr = 104 is taken as an example. The λres(trest) is normalized as 
( )

( )
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res rest
f rest

res

t
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where λres(trest) is the λres at rest time trest, and λres() is the equilibrium λres in the training process. 

(C) The Prony series parameters Rf,i as a function of tr. (D) The characteristic detraining time

(forgetting time) f,1, f,2, and f,3 of λres(trest) as a function of tr. The vertical dotted line indicates

affine. The dashed lines are a guide for the eyes. The error bar (tr = 2.1 to 3.7) is SE from at least

three measurements.
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Fig. S12. Effect of training duration Ntr on detraining dynamics of s-PA gel. (A) The Wex/Wex0 

and (B) the residual stretch ratio λres in cyclic training and detraining as a function of time (both 

training and rest time). Training at fixed tr = 3.7 for Ntr = 200, 2000, 104 are taken as examples. 

Cyclic training is plotted by spheres and the detraining process is plotted by open symbols. The 

arrows indicate the points at which the samples are allowed to rest, and the corresponding Ntr are 

shown next to each detraining curve. (C) Evolution of Wex(trest)/Wex0 as a function of rest time trest. 

The data is extracted from (A). (D) Evolution of λres(trest) as a function of rest time trest. The data is 

extracted from (B). (E) The characteristic detraining time (forgetting time) f,1, f,2, and f,3 of 

Wex(trest) versus Ntr. Eq. S3 is used for fitting the Wex(trest) curves of detraining. (F) The 

characteristic detraining time (forgetting time) f,1, f,2, and f,3 of λres(trest) versus Ntr. Eq. S4 is used 

for fitting the λres(trest) curves of detraining. In (E) and (F), the circles denote training at tr = 2.9 

for varied Ntr and the spheres denote training at tr = 3.7 for varied Ntr. The characteristic detraining 

times f,1, f,2, and f,3 of both Wex(trest) and λres(trest) indicate that Ntr  1000 is required for saturated 

training. 
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Fig. S13. Loading-unloading curves of the unnotched s-PA samples during cyclic training 

under tr = 2.9 (< affine) and tr = 3.7 (> affine). 
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Fig. S14. Crack tip profiles of s-PA gels during fatigue test at λfatigue = 2.9 after trained at 

varied conditions and the radius of curvature at the crack tip (R). The data is extracted from 

Fig. 4B. X = 0 denotes the position of pre-cut perpendicular to loading direction, and Y = 0 denotes 

the center of crack along the loading direction. The radius of curvature at the crack tip R is obtained 

at Y  0 by 𝑅 = |
(1+𝑋′2)

3/2

𝑋′′ |, where 𝑋′ =
d𝑋

d𝑌
and 𝑋′′ =

𝑑2𝑋

𝑑𝑌2. 
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Section S4. Direct fatigue test 

For the direct fatigue test, the pre-notched s-PA gel with the pure shear geometry (inset of fig. 

15A) was used. Consecutive cyclic loading without interval between cycles was performed at 

preset fatigue. The crack propagation with cycles is recorded as c. Self-training effect is observed 

at fatigue  tran while overtraining happens at fatigue > tran. The former shows that the stress 

concentration gradually weakens with cycle number Nfatigue (fig. S15B), whereas the latter shows 

that the crack tip always has severe stress concentration (fig. S15C). The tran = 3.1 ( affine) is the 

slow-to-fast crack propagation transition stretch ratio in the direct fatigue test as indicated in our 

previous work (49).  

Fig. S15. Self-training and overtraining effect in direct fatigue test using pre-notched s-PA 

samples. (A) Fatigue behavior of the pristine notched gel (inset, L0 = 50 mm, H0 = 10 mm, and c0

= 10 mm) at fatigue = 2.7 < tran and fatigue = 3.5 > tran. Typical evolution of birefringence images 

with cycle number Nfatigue at fatigue = 2.7 (B) and fatigue = 3.5 (C).  
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Fig. S16. Mechanical adaptation of s-PA gel under stepwise cyclic stretching. (A) Experiment 

proposal for training. One piece of s-PA gel undergoes the following training protocol. Initially, it 

is subjected to cyclic loading at a preset tr = 2.9 for Ntr = 5000 cycles. Subsequently, the tr is 

increased to tr = 3.7 and the sample undergoes an additional Ntr = 5000 cycles. Finally, the tr is 

reduced back tr = 2.9 for cyclic training. The corresponding (B) strain energy density obtained 

from the loading curves (Wex) and (C) the residual stretch ratio (res). We can see that both the Wex 

and res can rapidly adapt to the mechanical training. Notably, at the two tr = 2.9, the Wex and res 

exhibit similar values in the steady state, despite having different training histories. 
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