HUSCAP logo Hokkaido Univ. logo

Hokkaido University Collection of Scholarly and Academic Papers >
Graduate School of Dental Medicine / Faculty of Dental Medicine >
Peer-reviewed Journal Articles, etc >

Apoptosis signal-regulating kinase 1-mediated sustained p38 mitogen-activated protein kinase activation regulates mycoplasmal lipoprotein- and staphylococcal peptidoglycan-triggered Toll-like receptor 2 signalling pathways

Files in This Item:
CM7-9.pdf1.19 MBPDFView/Open
Please use this identifier to cite or link to this item:http://hdl.handle.net/2115/30270

Title: Apoptosis signal-regulating kinase 1-mediated sustained p38 mitogen-activated protein kinase activation regulates mycoplasmal lipoprotein- and staphylococcal peptidoglycan-triggered Toll-like receptor 2 signalling pathways
Authors: Into, Takeshi Browse this author
Shibata, Ken-ichiro Browse this author
Keywords: TLR2
ASK1
p38 MAPK
AP-1
NF-κB
caspase
Issue Date: Sep-2005
Publisher: Blackwell Publishing
Journal Title: Cellular Microbiology
Volume: 7
Issue: 9
Start Page: 1305
End Page: 1317
Publisher DOI: 10.1111/j.1462-5822.2005.00558.x
PMID: 16098218
Abstract: Toll-like receptor (TLR) 2 functions as a sensor for detecting various microbial components conserved in bacteria or fungi in innate immunity. TLR2 induces several signalling pathways linking to activation of the transcriptional factors NF-κB and AP-1 as well as induction of cell death. In human embryonic kidney 293 cells expressed human TLR2, mycoplasmal lipoproteins (MLP) or staphylococcal peptidoglycans (PGN) induced sustained phosphorylation of p38 mitogen-activated protein kinase (MAPK), accompanied by generation of reactive oxygen species. This observation encouraged us to examine roles of apoptosis signal-regulating kinase 1 (ASK1) in TLR2 signalling, because ASK1 is an upstream activator of p38 MAPK during exposure to oxidative stress and other stressful stimuli. A kinase-inactive mutant of ASK1 greatly impaired the sustained phosphorylation of p38 MAPK induced by MLP or PGN. This mutant also attenuated MLP- or PGN-induced transcriptional activities of NF-κB and AP-1 via inhibition of p38 MAPK activation. MLP- or PGN-induced cell death reactions, including DNA fragmentation and caspase-3/7 activation, were also downregulated by the ASK1 mutant via p38 MAPK inhibition. Furthermore, TLR2 signalling had a potential to phosphorylate and dephosphorylate ASK1 at Ser83 residue. Thus, MLP and PGN have capabilities to induce ASK1-dependent signalling pathways which regulate p38 MAPK activation through TLR2, leading to activation of NF-κB and AP-1 as well as induction of cell death.
Rights: The definitive version is available at www.blackwell-synergy.com
Type: article (author version)
URI: http://hdl.handle.net/2115/30270
Appears in Collections:歯学院・歯学研究院 (Graduate School of Dental Medicine / Faculty of Dental Medicine) > 雑誌発表論文等 (Peer-reviewed Journal Articles, etc)

Submitter: 柴田 健一郎

Export metadata:

OAI-PMH ( junii2 , jpcoar_1.0 )

MathJax is now OFF:


 

 - Hokkaido University