HUSCAP logo Hokkaido Univ. logo

Hokkaido University Collection of Scholarly and Academic Papers >
Research Units >
21st Century COE Program, Neo-Science of Natural History - Origin and Evolution of Natural Diversity >
Neo-Science of Natural History : Integration of Geoscience and Biodiversity Studies >
Proceedings >

Geochemical Characteristics of Tungsten in Miyako Granitoid and Scheelite-bearing Aplitic Veins at the Yamaguchi Cu-W Skarn Deposit, Iwate, Japan

Files in This Item:
p137-142-neo-science.pdf1.45 MBPDFView/Open
Please use this identifier to cite or link to this item:http://hdl.handle.net/2115/38518

Title: Geochemical Characteristics of Tungsten in Miyako Granitoid and Scheelite-bearing Aplitic Veins at the Yamaguchi Cu-W Skarn Deposit, Iwate, Japan
Authors: Ogata, Takeyuki Browse this author
Ishiyama, Daizo Browse this author
Mizuta, Toshio Browse this author
Satoh, Hinako Browse this author
Matsueda, Hiroharu Browse this author
Keywords: Tungsten
Magmatic fluid
Devolatilization
Issue Date: 2004
Publisher: Graduate School of Science, Hokkaido University
Citation: Edited by Shunsuke F. Mawatari, Hisatake Okada.
Journal Title: Neo-Science of Natural History: Integration of Geoscience and Biodiversity Studies : Proceedings of International Symposium on "Dawn of a New Natural History - Integration of Geoscience and Biodiversity Studies" March 5-6, 2004, Sapporo
Start Page: 137
End Page: 142
Abstract: Tungsten analyses were made on 16 samples collected from the North Miyako granitic body in Northeast Japan. Petrographic facies of the North granitic body vary from quartz diorite in the marginal zone (zone A), to tonalite and granodiorite (zone B), and to granite in the central zone (zone C). A large number of barren and scheelite-bearing aplitic veins are distributed around the Yamaguchi deposit which occurs in the contact aureole of zone C granite. The tungsten content of zone C granite is lower than that of the granitic rocks in zones A, B and the aplitic veins. It appears that tungsten in the differentiated granitic magma, which was associated with ore mineralization, was transported out of the magma chamber by magmatic fluids. The tungsten content is generally low in the North Miyako granitic rocks but high in granitic rocks of Okinoshima zoned pluton, as well as in Otani granite and Busetsu granite from the Southwest Japan. In the case of magnetite-series, however, the behavior of tungsten in the Miyako granitic body from the tungsten metallogenic province is similar to that of the Okinoshima zoned pluton from molybdenum metallogenic province in Southwest Japan. Behavior of tungsten in granitic magma is affected by magmatic evolution during the process of saturation of granitic melt with magmatic fluid.
Description: International Symposium on "Dawn of a New Natural History - Integration of Geoscience and Biodiversity Studies". 5-6 March 2004. Sapporo, Japan.
Conference Name: International Symposium on "Dawn of a New Natural History : Integration of Geoscience and Biodiversity Studies"
Conference Place: Sapporo
Type: proceedings
URI: http://hdl.handle.net/2115/38518
Appears in Collections:Neo-Science of Natural History : Integration of Geoscience and Biodiversity Studies > Proceedings

Export metadata:

OAI-PMH ( junii2 , jpcoar )


 

Feedback - Hokkaido University