HUSCAP logo Hokkaido Univ. logo

Hokkaido University Collection of Scholarly and Academic Papers >
低温科学研究所  >
雑誌発表論文等  >

Projecting Antarctic ice discharge using response functions from SeaRISE ice-sheet models


Levermann_etal_2012_TCD-1.pdf1.91 MBPDF見る/開く

タイトル: Projecting Antarctic ice discharge using response functions from SeaRISE ice-sheet models
著者: Levermann, A. 著作を一覧する
Winkelmann, R. 著作を一覧する
Nowicki, S. 著作を一覧する
Fastook, J. L. 著作を一覧する
Frieler, K. 著作を一覧する
Greve, R. 著作を一覧する
Hellmer, H. H. 著作を一覧する
Martin, M. A. 著作を一覧する
Mengel, M. 著作を一覧する
Payne, A. J. 著作を一覧する
Pollard, D. 著作を一覧する
Sato, T. 著作を一覧する
Timmermann, R. 著作を一覧する
Wang, W. L. 著作を一覧する
Bindschadler, R. A. 著作を一覧する
発行日: 2012年 8月23日
出版者: Copernicus Publications
誌名: The Cryosphere Discussions
巻: 6
号: 4
開始ページ: 3447
終了ページ: 3489
出版社 DOI: 10.5194/tcd-6-3447-2012
抄録: The largest uncertainty in projections of future sea-level change still results from the potentially changing dynamical ice discharge from Antarctica. While ice discharge can alter through a number of processes, basal ice-shelf melting induced by a warming ocean has been identified as a major if not the major cause for possible additional ice flow across the grounding line. Here we derive dynamic ice-sheet response functions for basal ice-shelf melting using experiments carried out within the Sea-level Response to Ice Sheet Evolution (SeaRISE) intercomparison project with five different Antarctic ice-sheet models. As used here these response functions provide separate contributions for four different Antarctic drainage regions. Under the assumptions of linear-response theory we project future ice-discharge for each model, each region and each of the four Representative Concentration Pathways (RCP) using oceanic temperatures from 19 comprehensive climate models of the Coupled Model Intercomparison Project, CMIP-5, and two ocean models from the EU-project Ice2Sea. Uncertainty in the climatic forcing, the oceanic response and the ice-model differences is combined into an uncertainty range of future Antarctic ice-discharge induced from basal ice-shelf melt. The additional ice-loss (Table 6) is clearly scenario-dependent and results in a median of 0.07 m (66%-range: 0.04–0.10 m; 90%-range: −0.01–0.26 m) of global sea-level equivalent for the low-emission RCP-2.6 scenario and yields 0.1 m (66%-range: 0.06–0.14 m; 90%-range: −0.01–0.45 m) for the strongest RCP-8.5. If only models with an explicit representation of ice-shelves are taken into account the scenario dependence remains and the values change to: 0.05 m (66%-range: 0.03–0.08 m) for RCP-2.6 and 0.07 m (66%-range: 0.04–0.11 m) for RCP-8.5. These results were obtained using a time delay between the surface warming signal and the subsurface oceanic warming as observed in the CMIP-5 models. Without this time delay the ranges for all ice-models changes to 0.10 m (66%-range: 0.07–0.12 m; 90%-range: 0.01–0.28 m) for RCP-2.6 and 0.15 m (66%-range: 0.10–0.21 m; 90%-range: 0.02–0.53 m) for RCP-8.5. All probability distributions as provided in Fig. 10 are highly skewed towards high values.
資料タイプ: article
出現コレクション:雑誌発表論文等 (Peer-reviewed Journal Articles, etc)

提供者: Greve Ralf


本サイトに関するご意見・お問い合わせは repo at へお願いします。 - 北海道大学