HUSCAP logo Hokkaido Univ. logo

Hokkaido University Collection of Scholarly and Academic Papers >
Graduate School of Veterinary Medicine / Faculty of Veterinary Medicine >
Peer-reviewed Journal Articles, etc >

Where to deliver baits for deworming urban red foxes for Echinococcus multilocularis control: new protocol for micro-habitat modeling of fox denning requirements

This item is licensed under:Creative Commons Attribution 2.0 Generic

Files in This Item:
Parasites Vectors 2014, 7357.pdf1.68 MBPDFView/Open
Please use this identifier to cite or link to this item:http://hdl.handle.net/2115/57254

Title: Where to deliver baits for deworming urban red foxes for Echinococcus multilocularis control: new protocol for micro-habitat modeling of fox denning requirements
Authors: Ikeda, Takako Browse this author
Yoshimura, Masashi Browse this author
Onoyama, Keiichi Browse this author
Oku, Yuzaburo Browse this author →KAKEN DB
Nonaka, Nariaki Browse this author →KAKEN DB
Katakura, Ken Browse this author →KAKEN DB
Keywords: Echinococcus multilocularis
Baiting strategy
Cost-benefit performance
Vulpes vulpes
Urban red fox
Den site selection
Key environmental factors
Key spatial scale
Requisite spatial scale
Heeding range
Issue Date: 6-Aug-2014
Publisher: Biomed Central
Journal Title: Parasites & Vectors
Volume: 7
Start Page: 357
Publisher DOI: 10.1186/1756-3305-7-357
Abstract: Background: Deworming wild foxes by baiting with the anthelmintic praziquantel is being established as a preventive technique against environmental contamination with Echinococcus multilocularis eggs. Improvement of the cost-benefit performance of baiting treatment is required urgently to raise and maintain the efficacy of deworming. We established a spatial model of den site selection by urban red foxes, the definitive host, to specify the optimal micro-habitats for delivering baits in a new modeling approach modified for urban fox populations. Methods: The model was established for two cities (Obihiro and Sapporo) in Hokkaido, Japan, in which a sylvatic cycle of E. multilocularis is maintained. The two cities have different degrees of urbanization. The modeling process was designed to detect the best combination of key environmental factors and spatial scale that foxes pay attention to most (here named 'heeding range') when they select den sites. All possible models were generated using logistic regression analysis, with "presence" or "absence" of fox den as the objective variable, and nine landscape categories customized for urban environments as predictor variables to detect the best subset of predictors. This procedure was conducted for each of ten sizes of concentric circles from dens and control points to detect the best circle size. Out of all models generated, the most parsimonious model was selected using Akaike's Information Criterion (AIC) inspection. Results: Our models suggest that fox dens in Obihiro are located at the center of a circle with 500 m radius including low percentages of wide roads, narrow roads, and occupied buildings, but high percentages of green covered areas; the dens in Sapporo within 300 m radius with low percentages of wide roads, occupied buildings, but high percentages of riverbeds and green covered areas. The variation of the models suggests the necessity of accumulating models for various types of cities in order to reveal the patterns of the model. Conclusions: Our denning models indicating suitable sites for delivering baits will improve the cost-benefit performance of the campaign. Our modeling protocol is suitable for the urban landscapes, and for extracting the heeding range when they select the den sites.
Rights: http://creativecommons.org/licenses/by/2.0
Type: article
URI: http://hdl.handle.net/2115/57254
Appears in Collections:獣医学院・獣医学研究院 (Graduate School of Veterinary Medicine / Faculty of Veterinary Medicine) > 雑誌発表論文等 (Peer-reviewed Journal Articles, etc)

Submitter: 片倉 賢

Export metadata:

OAI-PMH ( junii2 , jpcoar_1.0 )

MathJax is now OFF:


 

 - Hokkaido University