HUSCAP logo Hokkaido Univ. logo

Hokkaido University Collection of Scholarly and Academic Papers >
Graduate School of Medicine / Faculty of Medicine >
Peer-reviewed Journal Articles, etc >

Ebola virus requires a host scramblase for externalization of phosphatidylserine on the surface of viral particles

This item is licensed under:Creative Commons Attribution 4.0 International

Files in This Item:
journal.ppat.1006848.pdf2.56 MBPDFView/Open
journal.ppat.1006848.s001.tiffS1 Fig.149.75 kBTIFFView/Open
journal.ppat.1006848.s002.tiffS2 Fig.199.11 kBTIFFView/Open
journal.ppat.1006848.s003.pdfS3 Fig.3.71 MBPDFView/Open
journal.ppat.1006848.s004.tiffS4 Fig.2.2 MBTIFFView/Open
journal.ppat.1006848.s005.tiffS5 Fig.1 MBTIFFView/Open
Please use this identifier to cite or link to this item:http://hdl.handle.net/2115/68604

Title: Ebola virus requires a host scramblase for externalization of phosphatidylserine on the surface of viral particles
Authors: Nanbo, Asuka Browse this author →KAKEN DB
Maruyama, Junki Browse this author
Imai, Masaki Browse this author
Ujie, Michiko Browse this author
Fujioka, Yoichiro Browse this author
Nishide, Shinya Browse this author →KAKEN DB
Takada, Ayato Browse this author →KAKEN DB
Ohba, Yusuke Browse this author →KAKEN DB
Kawaoka, Yoshihiro Browse this author →KAKEN DB
Issue Date: Jan-2018
Publisher: PLOS
Journal Title: PLOS pathogens
Volume: 14
Issue: 1
Start Page: e1006848
Publisher DOI: 10.1371/journal.ppat.1006848
Abstract: Cell surface receptors for phosphatidylserine contribute to the entry of Ebola virus (EBOV) particles, indicating that the presence of phosphatidylserine in the envelope of EBOV is important for the internalization of EBOV particles. Phosphatidylserine is typically distributed in the inner layer of the plasma membrane in normal cells. Progeny virions bud from the plasma membrane of infected cells, suggesting that phosphatidylserine is likely flipped to the outer leaflet of the plasma membrane in infected cells for EBOV virions to acquire it. Currently, the intracellular dynamics of phosphatidylserine during EBOV infection are poorly understood. Here, we explored the role of XK-related protein (Xkr) 8, which is a scramblase responsible for exposure of phosphatidylserine in the plasma membrane of apoptotic cells, to understand its significance in phosphatidylserine-dependent entry of EBOV. We found that Xkr8 and transiently expressed EBOV glycoprotein GP often co-localized in intracellular vesicles and the plasma membrane. We also found that co-expression of GP and viral major matrix protein VP40 promoted incorporation of Xkr8 into ebolavirus-like particles (VLPs) and exposure of phosphatidylserine on their surface, although only a limited amount of phosphatidylserine was exposed on the surface of the cells expressing GP and/or VP40. Downregulating Xkr8 or blocking caspase-mediated Xkr8 activation did not affect VLP production, but they reduced the amount of phosphatidylserine on the VLPs and their uptake in recipient cells. Taken together, our findings indicate that Xkr8 is trafficked to budding sites via GP-containing vesicles, is incorporated into VLPs, and then promote the entry of the released EBOV to cells in a phosphatidylserine-dependent manner.
Rights: http://creativecommons.org/licenses/by/4.0/
Type: article
URI: http://hdl.handle.net/2115/68604
Appears in Collections:医学院・医学研究院 (Graduate School of Medicine / Faculty of Medicine) > 雑誌発表論文等 (Peer-reviewed Journal Articles, etc)

Submitter: 南保 明日香

Export metadata:

OAI-PMH ( junii2 , jpcoar_1.0 )

MathJax is now OFF:


 

 - Hokkaido University