HUSCAP logo Hokkaido Univ. logo

Hokkaido University Collection of Scholarly and Academic Papers >
Institute of Low Temperature Science >
Peer-reviewed Journal Articles, etc >

Seasonal-Scale Dating of a Shallow Ice Core From Greenland Using Oxygen Isotope Matching Between Data and Simulation

Files in This Item:
JGR-Atmospheres_2017JD026716.pdf3.16 MBPDFView/Open
Please use this identifier to cite or link to this item:http://hdl.handle.net/2115/70252
Related Items in HUSCAP:

Title: Seasonal-Scale Dating of a Shallow Ice Core From Greenland Using Oxygen Isotope Matching Between Data and Simulation
Authors: Furukawa, Ryoto Browse this author
Uemura, Ryu Browse this author →KAKEN DB
Fujita, Koji Browse this author →KAKEN DB
Sjolte, Jesper Browse this author
Yoshimura, Kei Browse this author →KAKEN DB
Matoba, Sumito Browse this author →KAKEN DB
Iizuka, Yoshinori Browse this author →KAKEN DB
Issue Date: 15-Nov-2017
Publisher: American Geophysical Union
Journal Title: Journal of Geophysical Research: Atmospheres
Volume: 122
Issue: 20
Start Page: 10,873
End Page: 10,887
Publisher DOI: 10.1002/2017JD026716
Abstract: A precise age scale based on annual layer counting is essential for investigating pastenvironmental changes from ice core records. However, subannual scale dating is hampered by theirregular intraannual variabilities of oxygen isotope (δ18O) records. Here we propose a dating method basedon matching the δ18O variations between ice core records and records simulated by isotope-enabled climatemodels. We applied this method to a new δ18O record from an ice core obtained from a dome site insoutheast Greenland. The close similarity between the δ18O records from the ice core and models enablescorrelation and the production of a precise age scale, with an accuracy of a few months. A missing δ18Ominimum in the 1995/1996 winter is an example of an indistinct δ18O seasonal cycle. Our analysis suggeststhat the missing δ18O minimum is likely caused by a combination of warm air temperature, weak moisturetransport, and cool ocean temperature. Based on the age scale, the average accumulation rate from 1960 to2014 is reconstructed as 1.02 m yr-1in water equivalent. The annual accumulation rate shows an increasingtrend with a slope of 3.6 mm yr-1, which is mainly caused by the increase in the autumn accumulationrate of 2.6 mm yr-1. This increase is likely linked to the enhanced hydrological cycle caused by the decreasein Arctic sea ice area. Unlike the strong seasonality of precipitation amount in the ERA reanalysis data in thesoutheast dome region, our reconstructed accumulation rate suggests a weak seasonality.
Rights: Copyright 2017 American Geophysical Union.
Type: article
URI: http://hdl.handle.net/2115/70252
Appears in Collections:低温科学研究所 (Institute of Low Temperature Science) > 雑誌発表論文等 (Peer-reviewed Journal Articles, etc)

Submitter: 飯塚 芳徳

Export metadata:

OAI-PMH ( junii2 , jpcoar_1.0 )

MathJax is now OFF:


 

 - Hokkaido University