HUSCAP logo Hokkaido Univ. logo

Hokkaido University Collection of Scholarly and Academic Papers >
International Institute for Zoonosis Control >
Peer-reviewed Journal Articles, etc >

Loss of Bacitracin Resistance Due to a Large Genomic Deletion among Bacillus anthracis Strains

This item is licensed under:Creative Commons Attribution 4.0 International

Files in This Item:
e00182-18.full.pdf1.67 MBPDFView/Open
Please use this identifier to cite or link to this item:http://hdl.handle.net/2115/72165

Title: Loss of Bacitracin Resistance Due to a Large Genomic Deletion among Bacillus anthracis Strains
Authors: Furuta, Yoshikazu Browse this author
Harima, Hayato Browse this author
Ito, Emiko Browse this author
Maruyama, Fumito Browse this author
Ohnishi, Naomi Browse this author
Osaki, Ken Browse this author
Ogawa, Hirohito Browse this author
Squarre, David Browse this author
Hang'ombe, Bernard Mudenda Browse this author
Higashi, Hideaki Browse this author →KAKEN DB
Keywords: Bacillus anthracis
Bacillus cereus group
antibiotic resistance
bacitracin
genome analysis
rRNA operon
unequal crossing over
Issue Date: Sep-2018
Publisher: American Society for Microbiology
Journal Title: Msystems
Volume: 3
Issue: 5
Start Page: e00182-18
Publisher DOI: 10.1128/mSystems.00182-18
Abstract: Bacillus anthracis is a Gram-positive endospore-forming bacterial species that causes anthrax in both humans and animals. In Zambia, anthrax cases are frequently reported in both livestock and wildlife, with occasional transmission to humans, causing serious public health problems in the country. To understand the genetic diversity of B. anthracis strains in Zambia, we sequenced and compared the genomic DNA of B. anthracis strains isolated across the country. Single nucleotide polymorphisms clustered these strains into three groups. Genome sequence comparisons revealed a large deletion in strains belonging to one of the groups, possibly due to unequal crossing over between a pair of rRNA operons. The deleted genomic region included genes conferring resistance to bacitracin, and the strains with the deletion were confirmed with loss of bacitracin resistance. Similar deletions between rRNA operons were also observed in a few B. anthracis strains phylogenetically distant from Zambian strains. The structure of bacitracin resistance genes flanked by rRNA operons was conserved only in members of the Bacillus cereus group. The diversity and genomic characteristics of B. anthracis strains determined in this study would help in the development of genetic markers and treatment of anthrax in Zambia. IMPORTANCE Anthrax is caused by Bacillus anthracis, an endospore-forming soil bacterium. The genetic diversity of B. anthracis is known to be low compared with that of Bacillus species. In this study, we performed whole-genome sequencing of Zambian isolates of B. anthracis to understand the genetic diversity between closely related strains. Comparison of genomic sequences revealed that closely related strains were separated into three groups based on single nucleotide polymorphisms distributed throughout the genome. A large genomic deletion was detected in the region containing a bacitracin resistance gene cluster flanked by rRNA operons, resulting in the loss of bacitracin resistance. The structure of the deleted region, which was also conserved among species of the Bacillus cereus group, has the potential for both deletion and amplification and thus might be enabling the species to flexibly control the level of bacitracin resistance for adaptive evolution.
Rights: Copyright © 2018 Furuta et al.
https://creativecommons.org/licenses/by/4.0/
Type: article
URI: http://hdl.handle.net/2115/72165
Appears in Collections:人獣共通感染症国際共同研究所 (International Institute for Zoonosis Control) > 雑誌発表論文等 (Peer-reviewed Journal Articles, etc)

Submitter: 古田 芳一

Export metadata:

OAI-PMH ( junii2 , jpcoar_1.0 )

MathJax is now OFF:


 

 - Hokkaido University