HUSCAP logo Hokkaido Univ. logo

Hokkaido University Collection of Scholarly and Academic Papers >
Graduate School of Environmental Science / Faculty of Environmental Earth Science >
Peer-reviewed Journal Articles, etc >

Highly selective and efficient photocatalytic reduction of nitrate in water by a tandem reaction system consisting of Pt/TiO2 and SnPd/Al2O3: A comparative study of the tandem reaction system with a typical semiconductor photocatalyst, SnPd/TiO2

This item is licensed under:Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

Files in This Item:
Revised manuscript (JCAT-16-1152).pdf522 kBPDFView/Open
Please use this identifier to cite or link to this item:http://hdl.handle.net/2115/73374

Title: Highly selective and efficient photocatalytic reduction of nitrate in water by a tandem reaction system consisting of Pt/TiO2 and SnPd/Al2O3: A comparative study of the tandem reaction system with a typical semiconductor photocatalyst, SnPd/TiO2
Authors: Hirayama, Jun Browse this author
Kamiya, Yuichi Browse this author →KAKEN DB
Keywords: Photocatalysis
Nitrate reduction
Pt/TiO2
Tandem reaction system
Catalytic function differentiation
Tin-palladium bimetal
Hydrogenation
Issue Date: Apr-2017
Publisher: Elsevier
Journal Title: Journal of catalysis
Volume: 348
Start Page: 306
End Page: 313
Publisher DOI: 10.1016/j.jcat.2016.12.019
Abstract: A tandem reaction system consisting of a photocatalyst (Pt/TiO2) and a nonphotocatalyst (SnPd/Al2O3) promoted the reduction of NO3- into gaseous products (mainly N-2) under light irradiation (lambda > 300 nm) in the presence of glucose as a hole scavenger. Photocatalytic H-2 evolution (2H(+) + 2(e-) -> H-2) proceeded over Pt/TiO2, and conventional catalytic reduction of NO3- with H-2 (NO3-- + 5/2H(2) -> 1/2N(2) + 2H(2)O + OH-) occurred over SnPd/Al2O3. We optimized the loading amount of Pt on TiO2, the Sn/Pd ratio, the loading amount of SnPd on Al2O3, and the two catalyst dosages. The optimized tandem system gave a high reduction rate of NO3- and a high selectivity for gas (94%) from the photocatalytic reduction of NO3- in water. On the other hand, a typical semiconductor photocatalyst SnPd/TiO2 with an optimized Sn/Pd ratio and an optimized loading amount of SnPd bimetal on TiO2 reduced NO3- about two-thirds as fast as the tandem system and was less selective for gas (70%). The tandem system suppressed the wasted H2 formation, resulting in high light use efficiency for the NO3- reduction (95%), which is defined as the ratio of the number of electrons consumed for NO3- reduction to the total number of electrons consumed for both NO3- reduction and photocatalytic H-2 evolution, though the tandem and SnPd/TiO2 systems consumed about the same total number of electrons. The tandem system has two advantages: (i) the Pt/TiO2 and SnPd/Al2O3 subsystems can be separately designed to give highly efficient photocatalytic and catalytic reactions, respectively; and (ii) the reaction rates of photocatalytic and catalytic reactions can be easily controlled by changing the catalyst dosage in the reactor. Those advantages brought about a high reduction rate for NO3-, high selectivity for gas, and high light use efficiency for NO3- reduction in the photocatalytic reduction of NO3- in water. (C) 2017 Elsevier Inc. All rights reserved.
Rights: © 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
Type: article (author version)
URI: http://hdl.handle.net/2115/73374
Appears in Collections:環境科学院・地球環境科学研究院 (Graduate School of Environmental Science / Faculty of Environmental Earth Science) > 雑誌発表論文等 (Peer-reviewed Journal Articles, etc)

Submitter: 神谷 裕一

Export metadata:

OAI-PMH ( junii2 , jpcoar_1.0 )

MathJax is now OFF:


 

 - Hokkaido University