HUSCAP logo Hokkaido Univ. logo

Hokkaido University Collection of Scholarly and Academic Papers >
Graduate School of Medicine / Faculty of Medicine >
Peer-reviewed Journal Articles, etc >

Assessing dengue control in Tokyo, 2014

This item is licensed under:Creative Commons Attribution 4.0 International

Files in This Item:

The file(s) associated with this item can be obtained from the following URL: https://doi.org/10.1371/journal.pntd.0007468


Title: Assessing dengue control in Tokyo, 2014
Authors: Yuan, Baoyin Browse this author
Lee, Hyojung Browse this author →KAKEN DB
Nishiura, Hiroshi Browse this author →KAKEN DB
Issue Date: Jun-2019
Publisher: PLOS
Journal Title: PLoS neglected tropical diseases
Volume: 13
Issue: 6
Start Page: e0007468
Publisher DOI: 10.1371/journal.pntd.0007468
PMID: 31226116
Abstract: Background In summer 2014, an autochthonous outbreak of dengue occurred in Tokyo, Japan, in which Yoyogi Park acted as the focal area of transmission. Recognizing the outbreak, concerted efforts were made to control viral spread, which included mosquito control, public announcement of the outbreak, and a total ban on entering the park. We sought to assess the effectiveness of these control measures. Methodology/Principal findings We used a mathematical model to describe the transmission dynamics. Using dates of exposure and illness onset, we categorized cases into three groups according to the availability of these datasets. The infection process was parametrically modeled by generation, and convolution of the infection process and the incubation period was fitted to the data. By estimating the effective reproduction number, we determined that the effect of dengue risk communication together with mosquito control from 28 August 2014 was insufficiently large to lower the reproduction number to below 1. However, once Yoyogi Park was closed on 4 September, the value of the effective reproduction number began to fall below 1, and the associated relative reduction in the effective reproduction number was estimated to be 20%-60%. The mean incubation period was an estimated 5.8 days. Conclusions/Significance Regardless of the assumed number of generations of cases, the combined effect of mosquito control, risk communication, and park closure appeared to be successful in interrupting the chain of dengue transmission in Tokyo. Author summary Evaluating the interventions implemented during an outbreak of mosquito-borne disease is of utmost importance, offering lessons for future control strategies. By retrospectively analyzing data of the first autochthonous dengue epidemic of the 21st century in Tokyo, Japan, we assessed the effectiveness of the interventions. Once a dengue outbreak was confirmed in late August 2014, the government of Japan took drastic mosquito control measures, targeting both adults and larvae. News of the outbreak was also widely disseminated via mass media along with experts' recommendations as to how people could avoid the risks of dengue infection. As the outbreak was not immediately controlled, the focal area of transmission, Yoyogi Park, was closed on 4 September. Using a mathematical model, we assessed how well dengue virus transmission was intervened in relation to the start times of interventions. As we incorporated precise timing into the model, we directly modeled the time of infection and accounted for the time delay from infection to illness onset. Thus, we revealed that mosquito control and risk communication measures alone could not interrupt the chain of transmission; however, adding park closure to these interventions was substantially effective in reducing the number of transmissions.
Rights: http://creativecommons.org/licenses/by/4.0/
Type: article
URI: http://hdl.handle.net/2115/75207
Appears in Collections:医学院・医学研究院 (Graduate School of Medicine / Faculty of Medicine) > 雑誌発表論文等 (Peer-reviewed Journal Articles, etc)

Export metadata:

OAI-PMH ( junii2 , jpcoar_1.0 )

MathJax is now OFF:


 

 - Hokkaido University