HUSCAP logo Hokkaido Univ. logo

Hokkaido University Collection of Scholarly and Academic Papers >
Graduate School of Medicine / Faculty of Medicine >
Peer-reviewed Journal Articles, etc >

Unsaturated Aldehyde Acrolein Promotes Retinal Glial Cell Migration

This item is licensed under:Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

Files in This Item:

The file(s) associated with this item can be obtained from the following URL: https://doi.org/10.1167/iovs.19-27346


Title: Unsaturated Aldehyde Acrolein Promotes Retinal Glial Cell Migration
Authors: Murata, Miyuki Browse this author →KAKEN DB
Noda, Kousuke Browse this author →KAKEN DB
Yoshida, Shiho Browse this author
Saito, Michiyuki Browse this author
Fujiya, Akio Browse this author
Kanda, Atsuhiro Browse this author →KAKEN DB
Ishida, Susumu Browse this author →KAKEN DB
Keywords: Acrolein
CXCL1
oxidative stress
Muller cell
Issue Date: Oct-2019
Publisher: Association for Research in Vision and Ophthalmology(ARVO)
Journal Title: Investigative ophthalmology & visual science
Volume: 60
Issue: 13
Start Page: 4425
End Page: 4435
Publisher DOI: 10.1167/iovs.19-27346
Abstract: PURPOSE. To investigate the effect of the unsaturated aldehyde acrolein on retinal glial cell migration. METHODS. Muller glial cell markers expression in TR-MUL5 were confirmed by RT-PCR and immunostaining. Cell viability and migration rate of TR-MUL5 cells were assessed after the stimulation with acrolein. DNA microarray analysis was performed to analyze changes in the expression levels of migration-related genes in Muller glial cells stimulated with acrolein. Real-time PCR and ELISA were performed to validate DNA microarray analysis results. Inhibitors of C-X-C motif chemokine ligand 1 (CXCL1), one of the genes highly upregulated after the exposure to acrolein, and blockers of its receptor, CXCR2, were used to investigate the role of the CXCL1-CXCR2 axis on glial cell migration. CXCL1 concentration was measured in vitreous fluid samples obtained from proliferative diabetic retinopathy (PDR) and nondiabetic control eyes. CXCL1 and CXCR2 expression in glial cells of fibrovascular tissues obtained from PDR patients was examined by immunostaining. RESULTS. At a high concentration, acrolein (100 mu M) significantly decreased cell viability. However, in moderate, sublethal concentrations (25-50 mu M), acrolein induced cell migration and substantially increased the production of CXCL1 in TR-MUL5 cells. CXCL1 concentration was significantly elevated in vitreous fluids of PDR patients, and CXCL1 and CXCR2 were present in glial cells in fibrovascular tissues of PDR patients. CXCL1 stimulation increased glial cell migration in a dose-dependent manner, which was abrogated by the neutralization of the CXCL1-CXCR2 axis. CONCLUSIONS. Our data demonstrate that acrolein promotes retinal Muller glial cell migration by enhancing CXCL1 production.
Rights: https://creativecommons.org/licenses/by-nc-nd/4.0/
Type: article
URI: http://hdl.handle.net/2115/76301
Appears in Collections:医学院・医学研究院 (Graduate School of Medicine / Faculty of Medicine) > 雑誌発表論文等 (Peer-reviewed Journal Articles, etc)

Export metadata:

OAI-PMH ( junii2 , jpcoar_1.0 )

MathJax is now OFF:


 

 - Hokkaido University