HUSCAP logo Hokkaido Univ. logo

Hokkaido University Collection of Scholarly and Academic Papers >
Graduate School of Environmental Science / Faculty of Environmental Earth Science >
Peer-reviewed Journal Articles, etc >

Ocean Sensitivity to Periodic and Constant Volcanism

Files in This Item:

The file(s) associated with this item can be obtained from the following URL:

Title: Ocean Sensitivity to Periodic and Constant Volcanism
Authors: Dogar, Muhammad Mubashar Browse this author →ORCID
Sato, Tomonori Browse this author →KAKEN DB
Liu, Fei Browse this author
Issue Date: 15-Jan-2020
Journal Title: Scientific Reports
Volume: 10
Issue: 1
Publisher DOI: 10.1038/s41598-019-57027-0
Abstract: It is strongly believed that the explosive eruptions produce negative radiative forcing that causes long-term perturbations in the ocean. Moreover, it is anticipated that a sporadic strong cooling should initiate more vigorous vertical mixing of the upper ocean, and therefore cools the ocean more effectively than a uniform radiative forcing. However, the long-term simulations show that on average the ocean heat content responses to periodic and constant forcings are comparable. To better understand this controversy and to better quantify the post-eruption oceanic response, we conducted two sets of parallel simulations, the first with a uniform/constant volcanic forcing and the second one with a periodic volcanic forcing of magnitude 1×, 5×, 10× and 30× of Pinatubo size eruption using Geophysical Fluid Dynamics Laboratory’s coupled model, CM2.1. We systematically compared the effect of periodic volcanic forcing with an equivalent time-average volcanic cooling. Our results reveal that on average, volcanic-induced perturbations in Ocean Heat Content (OHC), and sea-level rise (SLR) following uniform and periodic eruptions are almost identical. It further emphasizes that the strength of ocean heat uptake at different ocean depths is mainly driven by the strength of the Atlantic Meridional Overturning Circulation (AMOC). These findings are important for ocean initialization in long-term climate studies, and geoengineering applications. It would help to unfold uncertainties related to ocean relaxation process, heat storage, and redistribution.
Type: article
Appears in Collections:環境科学院・地球環境科学研究院 (Graduate School of Environmental Science / Faculty of Environmental Earth Science) > 雑誌発表論文等 (Peer-reviewed Journal Articles, etc)

Export metadata:

OAI-PMH ( junii2 , jpcoar )

MathJax is now OFF:


 - Hokkaido University