HUSCAP logo Hokkaido Univ. logo

Hokkaido University Collection of Scholarly and Academic Papers >
Graduate School of Health Sciences / Faculty of Health Sciences >
Peer-reviewed Journal Articles, etc >

A Model for Estimating Dose-Rate Effects on Cell-Killing of Human Melanoma after Boron Neutron Capture Therapy

This item is licensed under: Creative Commons Attribution 4.0 International

Files in This Item:

The file(s) associated with this item can be obtained from the following URL:

Title: A Model for Estimating Dose-Rate Effects on Cell-Killing of Human Melanoma after Boron Neutron Capture Therapy
Authors: Matsuya, Yusuke Browse this author →KAKEN DB
Fukunaga, Hisanori Browse this author →KAKEN DB
Omura, Motoko Browse this author →KAKEN DB
Date, Hiroyuki Browse this author →KAKEN DB
Keywords: boron neutron capture therapy (BNCT)
dose-rate effects
Issue Date: 30-Apr-2020
Publisher: MDPI
Journal Title: Cells
Volume: 9
Issue: 5
Start Page: 1117
Publisher DOI: 10.3390/cells9051117
PMID: 32365916
Abstract: Boron neutron capture therapy (BNCT) is a type of radiation therapy for eradicating tumor cells through a B-10(n,alpha)Li-7 reaction in the presence of B-10 in cancer cells. When delivering a high absorbed dose to cancer cells using BNCT, both the timeline of B-10 concentrations and the relative long dose-delivery time compared to photon therapy must be considered. Changes in radiosensitivity during such a long dose-delivery time can reduce the probability of tumor control; however, such changes have not yet been evaluated. Here, we propose an improved integrated microdosimetric-kinetic model that accounts for changes in microdosimetric quantities and dose rates depending on the B-10 concentration and investigate the cell recovery (dose-rate effects) of melanoma during BNCT irradiation. The integrated microdosimetric-kinetic model used in this study considers both sub-lethal damage repair and changes in microdosimetric quantities during irradiation. The model, coupled with the Monte Carlo track structure simulation code of the Particle and Heavy Ion Transport code System, shows good agreement with in vitro experimental data for acute exposure to Co-60 gamma -rays, thermal neutrons, and BNCT with B-10 concentrations of 10 ppm. This indicates that microdosimetric quantities are important parameters for predicting dose-response curves for cell survival under BNCT irradiations. Furthermore, the model estimation at the endpoint of the mean activation dose exhibits a reduced impact of cell recovery during BNCT irradiations with high linear energy transfer (LET) compared to Co-60 gamma -rays irradiation with low LET. Throughout this study, we discuss the advantages of BNCT for enhancing the killing of cancer cells with a reduced dose-rate dependency. If the neutron spectrum and the timelines for drug and dose delivery are provided, the present model will make it possible to predict radiosensitivity for more realistic dose-delivery schemes in BNCT irradiations.
Type: article
Appears in Collections:保健科学院・保健科学研究院 (Graduate School of Health Sciences / Faculty of Health Sciences) > 雑誌発表論文等 (Peer-reviewed Journal Articles, etc)

Export metadata:

OAI-PMH ( junii2 , jpcoar )

MathJax is now OFF:


 - Hokkaido University