HUSCAP logo Hokkaido Univ. logo

Hokkaido University Collection of Scholarly and Academic Papers >
Graduate School of Agriculture / Faculty of Agriculture >
Peer-reviewed Journal Articles, etc >

The molecular basis for allelic differences suggests Restorer-of-fertility 1 is a complex locus in sugar beet (Beta vulgaris L.)

This item is licensed under: Creative Commons Attribution 4.0 International

Files in This Item:
s12870-020-02721-9.pdf1.14 MBPDFView/Open
Please use this identifier to cite or link to this item:http://hdl.handle.net/2115/79719

Title: The molecular basis for allelic differences suggests Restorer-of-fertility 1 is a complex locus in sugar beet (Beta vulgaris L.)
Authors: Arakawa, Takumi Browse this author
Matsunaga, Muneyuki Browse this author
Matsui, Katsunori Browse this author
Itoh, Kanna Browse this author
Kuroda, Yosuke Browse this author →KAKEN DB
Matsuhira, Hiroaki Browse this author →KAKEN DB
Kitazaki, Kazuyoshi Browse this author →KAKEN DB
Kubo, Tomohiko Browse this author →KAKEN DB
Keywords: Cytoplasmic male sterility
Nuclear-mitochondrial interaction
Hybrid breeding
Oma1
Allelic diversity
Plant reproduction
Issue Date: 3-Nov-2020
Publisher: BioMed Central
Journal Title: BMC Plant Biology
Volume: 20
Start Page: 503
Publisher DOI: 10.1186/s12870-020-02721-9
Abstract: Background: Cytoplasmic male sterility (CMS) is a widely used trait for hybrid seed production in many crops. Sugar beet CMS is associated with a unique mitochondrial protein named preSATP6 that forms a 250-kDa complex. Restorer-of-fertility 1 (Rf1) is a nuclear gene that suppresses CMS and is, hence, one of the targets of sugar beet breeding. Rf1 has dominant, semi-dominant and recessive alleles, suggesting that it may be a multi-allelic locus; however, the molecular basis for differences in genetic action is obscure. Molecular cloning of Rf1 revealed a gene (orf20) whose protein products produced in transgenics can bind with preSATP6 to generate a novel 200-kDa complex. The complex is also detected in fertility-restored anthers concomitant with a decrease in the amount of the 250-kDa complex. Molecular diversity of the Rf1 locus involves organizational diversity of a gene cluster composed of orf20-like genes (RF-Oma1s). We examined the possibility that members of the clustered RF-Oma1 in this locus could be associated with fertility restoration. Results: Six yet uncharacterized RF-Oma1s from dominant and recessive alleles were examined to determine whether they could generate the 200-kDa complex. Analyses of transgenic calli revealed that three RF-Oma1s from a dominant allele could generate the 200-kDa complex, suggesting that clustered RF-Oma1s in the dominant allele can participate in fertility restoration. None of the three copies from two recessive alleles was 200-kDa generative. The absence of this ability was confirmed by analyzing mitochondrial complexes in anthers of plants having these recessive alleles. Together with our previous data, we designed a set of PCR primers specific to the 200-kDa generative RF-Oma1s. The amount of mRNA measured by this primer set inversely correlated with the amount of the 250-kDa complex in anthers and positively correlated with the strength of the Rf1 alleles. Conclusions: Fertility restoration by sugar beet Rf1 can involve multiple RF-Oma1s clustered in the locus, implying that stacking 200-kDa generative copies in the locus strengthens the efficacy, whereas the absence of 200-kDa generative copies in the locus makes the allele recessive irrespective of the copy number. We propose that sugar beet Rf1 is a complex locus.
Rights: © The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
http://creativecommons.org/licenses/by/4.0/
Type: article
URI: http://hdl.handle.net/2115/79719
Appears in Collections:農学院・農学研究院 (Graduate School of Agriculture / Faculty of Agriculture) > 雑誌発表論文等 (Peer-reviewed Journal Articles, etc)

Submitter: 久保 友彦

Export metadata:

OAI-PMH ( junii2 , jpcoar )

MathJax is now OFF:


 

 - Hokkaido University