HUSCAP logo Hokkaido Univ. logo

Hokkaido University Collection of Scholarly and Academic Papers >
Graduate School of Environmental Science / Faculty of Environmental Earth Science >
Peer-reviewed Journal Articles, etc >

Land Cover Influences on LST in Two Proposed Smart Cities of India: Comparative Analysis Using Spectral Indices

This item is licensed under:Creative Commons Attribution 4.0 International

Files in This Item:

The file(s) associated with this item can be obtained from the following URL:

Title: Land Cover Influences on LST in Two Proposed Smart Cities of India: Comparative Analysis Using Spectral Indices
Authors: Ramaiah, Manish Browse this author
Avtar, Ram Browse this author →KAKEN DB
Rahman, Md Mustafizur Browse this author
Keywords: SAVI
spectral indices
Issue Date: Sep-2020
Publisher: MDPI
Journal Title: Land
Volume: 9
Issue: 9
Start Page: 292
Publisher DOI: 10.3390/land9090292
Abstract: Elucidating the impact of Land Surface Temperature (LST) is an important aspect of urban studies. The impact of urbanization on LST has been widely studied to monitor the Urban Heat Island (UHI) phenomenon. However, the sensitivity of various urban factors such as urban green spaces (UGS), built-up area, and water bodies to LST is not sufficiently resolved for many urban settlements. By using remote sensing techniques, this study aimed to quantify the influence of urban factors on LST in the two traditional cities (i) Panaji and (ii) Tumkur of India, proposed to be developed as smart cities. Landsat data were used to extract thematic and statistical information about urban factors using the Enhanced Built-up and Bareness Index (EBBI), Modified Normalized Difference Water Index (MNDWI), and Soil Adjusted Vegetation Index (SAVI). The multivariate regression model revealed that the value of adjusted R(2)was 0.716 with a standard error of 1.97 for Tumkur city, while it was 0.698 with a standard error of 1.407 for Panaji city. The non-parametric correlation test brought out a strong negative correlation between MNDWI and LST with a value of 0.83 for Panaji, and between SAVI and LST with a value of 0.77 for Tumkur. The maximum percentage share of cooling surfaces are water bodies in Panaji with 35% coverage and green spaces in Tumkur with 25% coverage. Apparently, the UGS and water bodies can help in bringing down the LST, as well as facilitating healthy living conditions and aesthetic appeal. Therefore, the significance of ecosystem services (green spaces and water bodies) should be given priority in the decision-making process of sustainable and vibrant city development.
Rights: © 2020 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution License (
Type: article
Appears in Collections:環境科学院・地球環境科学研究院 (Graduate School of Environmental Science / Faculty of Environmental Earth Science) > 雑誌発表論文等 (Peer-reviewed Journal Articles, etc)

Export metadata:

OAI-PMH ( junii2 , jpcoar_1.0 )

MathJax is now OFF:


 - Hokkaido University