HUSCAP logo Hokkaido Univ. logo

Hokkaido University Collection of Scholarly and Academic Papers >
Graduate School of Veterinary Medicine / Faculty of Veterinary Medicine >
Peer-reviewed Journal Articles, etc >

Genome-wide DNA methylation analysis in canine gastrointestinal lymphoma

This item is licensed under: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

Files in This Item:

The file(s) associated with this item can be obtained from the following URL:

Title: Genome-wide DNA methylation analysis in canine gastrointestinal lymphoma
Authors: Ohta, Hiroshi Browse this author
Yamazaki, Jumpei Browse this author
Jelinek, Jaroslav Browse this author
Ishizaki, Teita Browse this author
Kagawa, Yumiko Browse this author
Yokoyama, Nozomu Browse this author
Nagata, Noriyuki Browse this author
Sasaki, Noboru Browse this author
Takiguchi, Mitsuyoshi Browse this author →KAKEN DB
Keywords: DNA methylation
gastrointestinal lymphoma
Issue Date: May-2020
Publisher: 公益社団法人 日本獣医学会 (The Japanese Society of Veterinary Science)
Journal Title: Journal of veterinary medical science
Volume: 82
Issue: 5
Start Page: 632
End Page: 638
Publisher DOI: 10.1292/jvms.19-0547
Abstract: DNA methylation is the covalent modification of methyl groups to DNA mostly at CpG dinucleotides and one of the most studied epigenetic mechanisms that leads to gene expression variability without affecting the DNA sequence. Genome-wide analysis of DNA methylation identified the signatures that could define subtypes of human lymphoma patients. The objective of this study was to conduct the genome-wide analysis of DNA methylation in dogs with gastrointestinal lymphoma (GIL). Genomic DNA was extracted from endoscopic biopsies from 10 dogs with GIL. We performed Digital Restriction Enzyme Assay of DNA Methylation (DREAM) for genome-wide DNA methylation analysis that could provide highly quantitative information on DNA methylation levels of CpG sites across the dog genome. We successfully obtained data of quantitative DNA methylation level for 148,601-162,364 CpG sites per GIL sample. Next, we analyzed 83,132 CpG sites to dissect the differences in DNA methylation between GIL and normal peripheral blood mononuclear cells (PBMCs). We found 383-3,054 CpG sites that were hypermethylated in GIL cases compared to PBMCs. Interestingly, 773 CpG sites including promoter regions of 61 genes were identified to be commonly hypermethylated in more than half of the cases, suggesting conserved DNA methylation patterns that are abnormal in GIL. This study revealed that there was a large number of hypermethylated sites that are common in most of canine GIL. These abnormal DNA methylation could be involved in tumorigenesis of the canine GIL.
Type: article
Appears in Collections:獣医学院・獣医学研究院 (Graduate School of Veterinary Medicine / Faculty of Veterinary Medicine) > 雑誌発表論文等 (Peer-reviewed Journal Articles, etc)

Export metadata:

OAI-PMH ( junii2 , jpcoar )

MathJax is now OFF:


 - Hokkaido University