HUSCAP logo Hokkaido Univ. logo

Hokkaido University Collection of Scholarly and Academic Papers >
International Institute for Zoonosis Control >
Peer-reviewed Journal Articles, etc >

A Novel Mechanism Underlying Antiviral Activity of an Influenza Virus M2-Specific Antibody

Files in This Item:

The file(s) associated with this item can be obtained from the following URL: https://doi.org/10.1128/JVI.01277-20


Title: A Novel Mechanism Underlying Antiviral Activity of an Influenza Virus M2-Specific Antibody
Authors: Manzoor, Rashid Browse this author
Eguchi, Nao Browse this author
Yoshida, Reiko Browse this author
Ozaki, Hiroichi Browse this author
Kondoh, Tatsunari Browse this author
Okuya, Kosuke Browse this author
Miyamoto, Hiroko Browse this author
Takada, Ayato Browse this author →KAKEN DB
Keywords: HA
M2
antibody function
antiviral mechanism
budding
influenza virus
Issue Date: Jan-2021
Publisher: American Society for Microbiology
Journal Title: Journal of Virology
Volume: 95
Issue: 1
Start Page: e01277-20
Publisher DOI: 10.1128/JVI.01277-20
Abstract: Protective immunity against influenza A viruses (IAVs) generally depends on antibodies to the major envelope glycoprotein, hemagglutinin (HA), whose antigenicity is distinctive among IAV subtypes. On the other hand, the matrix 2 (M2) protein is antigenically highly conserved and has been studied as an attractive vaccine antigen to confer cross-protective immunity against multiple subtypes of IAVs. However, antiviral mechanisms of M2-specific antibodies are not fully understood. Here, we report the molecular basis of antiviral activity of an M2-specific monoclonal antibody (MAb), rM2ss23. We first found that rM2ss23 inhibited A/Aichi/2/1968 (H3N2) (Aichi) but not A/PR/8/1934 (H1N1) (PR8) replication. rM2ss23 altered the cell surface distribution of M2, likely by cross-linking the molecules, and interfered with the colocalization of HA and M2, resulting in reduced budding of progeny viruses. However, these effects were not observed for another strain, PR8, despite the binding capacity of rM2ss23 to PR8 M2. Interestingly, HA was also involved in the resistance of PR8 to rM2ss23. We also found that two amino acid residues at positions 54 and 57 in the M2 cytoplasmic tail were critical for the insensitivity of PR8 to rM2ss2. These findings suggest that the disruption of the M2-HA colocalization on infected cells and subsequent reduction of virus budding is one of the principal mechanisms of antiviral activity of M2-specific antibodies and that anti-M2 antibody-sensitive and-resistant IAVs have different properties in the interaction between M2 and HA. IMPORTANCE Although the IAV HA is the major target of neutralizing antibodies, most of the antibodies are HA subtype specific, restricting the potential of HA-based vaccines. On the contrary, the IAV M2 protein has been studied as a vaccine antigen to confer cross-protective immunity against IAVs with multiple HA subtypes, since M2 is antigenically conserved. Although a number of studies highlight the protective role of anti-HA neutralizing and nonneutralizing antibodies, precise information on the molecular mechanism of action of M2-specific antibodies is still obscure. In this study, we found that an anti-M2 antibody interfered with the HA-M2 association, which is important for efficient budding of progeny virus particles from infected cells. The antiviral activity was IAV strain dependent despite the similar binding capacity of the antibody to M2, and, interestingly, HA was involved in susceptibility to the antibody. Our data provide a novel mechanism underlying antiviral activity of M2-specific antibodies.
Type: article
URI: http://hdl.handle.net/2115/81772
Appears in Collections:人獣共通感染症国際共同研究所 (International Institute for Zoonosis Control) > 雑誌発表論文等 (Peer-reviewed Journal Articles, etc)

Export metadata:

OAI-PMH ( junii2 , jpcoar_1.0 )

MathJax is now OFF:


 

 - Hokkaido University