HUSCAP logo Hokkaido Univ. logo

Hokkaido University Collection of Scholarly and Academic Papers >
Graduate School of Environmental Science / Faculty of Environmental Earth Science >
Peer-reviewed Journal Articles, etc >

Inner-Core Wind Field in a Concentric Eyewall Replacement of Typhoon Trami (2018) : A Quantitative Analysis Based on the Himawari-8 Satellite

Files in This Item:

The file(s) associated with this item can be obtained from the following URL: https://doi.org/10.1029/2020JD034434


Title: Inner-Core Wind Field in a Concentric Eyewall Replacement of Typhoon Trami (2018) : A Quantitative Analysis Based on the Himawari-8 Satellite
Authors: Tsujino, Satoki Browse this author
Horinouchi, Takeshi Browse this author →KAKEN DB
Tsukada, Taiga Browse this author
Kuo, Hung-Chi Browse this author
Yamada, Hiroyuki Browse this author
Tsuboki, Kazuhisa Browse this author →KAKEN DB
Keywords: Geostationary satellite
Tropical cyclone
Typhoon
Hurricane
Issue Date: 16-Apr-2021
Publisher: American Geophysical Union
Journal Title: Journal of Geophysical Research Atmospheres
Volume: 126
Issue: 7
Start Page: e2020JD034434
Publisher DOI: 10.1029/2020JD034434
Abstract: Dynamics of rapid changes of intensity and structure in an eyewall replacement cycle of tropical cyclones remain an open question. To clarify the dynamics of the inner eyewall decaying, a quantitative estimation of inner-core wind fields based on highly frequent observation images with 2.5-min temporal resolution in the Himawari-8 satellite is applied to Typhoon Trami (2018) which had a clear concentric eyewall structure. A high tangential wind of 50 m s(-1) is estimated at a radius of 30 km, which is located in the inner edge of the inner eyewall, during an active stage of the inner eyewall. During the decaying stage of the inner eyewall, the estimated tangential wind rapidly decreases to about 20 m s(-1) at a radius of 24 km. The satellite-based tangential winds are validated with dropsondes around the inner core by an aircraft. Vorticity field retrieved by the satellite-based tangential winds during the decaying stage exhibits a rapid decrease in an outer part of the eye and the inner eyewall, and a slow decrease near the storm center. Examination on an absolute angular momentum coordinate indicates that the rapidly slow-down rotation in the outer edge of the eye and inner eyewall is faster than a slow-down rotation explained by surface friction. It suggests that asymmetric eddies transport angular momentum across the moat in the inner eyewall dissipation. This study is the first examination of dynamical contributions of asymmetric eddies to the inner-eyewall dissipation based on satellite-estimated tangential winds. Plain Language Summary Intense tropical cyclones often have the concentric secondary eyewall outside the original (primary) eyewall enclosing the eye (i.e., concentric eyewalls; CEs). The primary eyewall tends to decay after the secondary eyewall formation (i.e., eyewall replacement cycle; ERC). Dynamics of rapid changes of intensity and structure in an ERC remain an open question. To clarify the dynamics of the inner eyewall decaying, a quantitative estimation of tangential winds is applied to Typhoon Trami (2018) with CEs. The estimation is based on tracking of cloud motions associated with the tangential winds, using 2.5-min images in the Himawari-8 satellite. A high tangential wind of 50 m s(-1) is estimated in the inner edge of the inner eyewall in Trami during an active stage of the inner eyewall. During the decaying stage of the inner eyewall, the estimated tangential wind rapidly decreases to about 20 m s(-1) at a radius of 24 km. The satellite-based tangential winds are validated with dropsondes by an aircraft. Our results highlight that the tangential winds during the inner-eyewall decaying stage is mainly decelerated due to eddies superposed on annular cyclonic circulations in the inner eyewall. The process can be best illustrated on an absolute momentum coordinate.
Rights: Copyright 2021 American Geophysical Union.
Type: article
URI: http://hdl.handle.net/2115/82130
Appears in Collections:環境科学院・地球環境科学研究院 (Graduate School of Environmental Science / Faculty of Environmental Earth Science) > 雑誌発表論文等 (Peer-reviewed Journal Articles, etc)

Export metadata:

OAI-PMH ( junii2 , jpcoar_1.0 )

MathJax is now OFF:


 

 - Hokkaido University