HUSCAP logo Hokkaido Univ. logo

Hokkaido University Collection of Scholarly and Academic Papers >
Institute of Low Temperature Science >
Peer-reviewed Journal Articles, etc >

Coherent Eddies Transporting Passive Scalars Through the Plant Canopy Revealed by Large-Eddy Simulations Using the Lattice Boltzmann Method

Files in This Item:

The file(s) associated with this item can be obtained from the following URL: https://doi.org/10.1007/s10546-021-00633-1


Title: Coherent Eddies Transporting Passive Scalars Through the Plant Canopy Revealed by Large-Eddy Simulations Using the Lattice Boltzmann Method
Authors: Watanabe, Tsutomu Browse this author
Takagi, Marie Browse this author
Shimoyama, Kou Browse this author →KAKEN DB
Kawashima, Masayuki Browse this author →KAKEN DB
Onodera, Naoyuki Browse this author
Inagaki, Atsushi Browse this author
Keywords: Double distribution function
Gram-Charlier distribution
Non-local transport
Scalar turbulence
Sweep and ejection
Issue Date: 9-Jul-2021
Publisher: Springer
Journal Title: Boundary-layer meteorology
Volume: 181
Start Page: 39
End Page: 71
Publisher DOI: 10.1007/s10546-021-00633-1
Abstract: A double-distribution-function lattice Boltzmann model for large-eddy simulations of a passive scalar field in a neutrally stratified turbulent flow is described. In simulations of the scalar turbulence within and above a homogeneous plant canopy, the model's performance is found to be comparable with that of a conventional large-eddy simulation model based on the Navier-Stokes equations and a scalar advection-diffusion equation in terms of the mean turbulence statistics, budgets of the second moments, power spectra, and spatial two-point correlation functions. For a top-down scalar, for which the plant canopy serves as a distributed sink, the variance and flux of the scalar near the canopy top are predominantly determined by sweep motions originating far above the canopy. These sweep motions, which have spatial scales much larger than the canopy height, penetrate deep inside the canopy and cause scalar sweep events near the canopy floor. By contrast, scalar ejection events near the canopy floor are induced by coherent eddies generated near the canopy top. The generation of such eddies is triggered by the downward approach of massive sweep motions to existing wide regions of weak ejective motions from inside to above the canopy. The non-local transport of scalars from above the canopy to the canopy floor, and vice versa, is driven by these eddies of different origins. Such non-local transport has significant implications for the scalar variance and flux budgets within and above the canopy, as well as the transport of scalars emitted from the underlying soils to the atmosphere.
Rights: The final publication is available at link.springer.com
Type: article
URI: http://hdl.handle.net/2115/82362
Appears in Collections:低温科学研究所 (Institute of Low Temperature Science) > 雑誌発表論文等 (Peer-reviewed Journal Articles, etc)

Export metadata:

OAI-PMH ( junii2 , jpcoar_1.0 )

MathJax is now OFF:


 

 - Hokkaido University