HUSCAP logo Hokkaido Univ. logo

Hokkaido University Collection of Scholarly and Academic Papers >
Graduate School of Life Science / Faculty of Advanced Life Science >
Peer-reviewed Journal Articles, etc >

Chitin-Based Double-Network Hydrogel as Potential Superficial Soft-Tissue-Repairing Materials

Files in This Item:
Biomacromolecules_21(10)_4220-4230.pdf1.67 MBPDFView/Open
Please use this identifier to cite or link to this item:http://hdl.handle.net/2115/82976

Title: Chitin-Based Double-Network Hydrogel as Potential Superficial Soft-Tissue-Repairing Materials
Authors: Huang, Junchao Browse this author
Frauenlob, Martin Browse this author
Shibata, Yuki Browse this author
Wang, Lei Browse this author →KAKEN DB
Nakajima, Tasuku Browse this author →KAKEN DB
Nonoyama, Takayuki Browse this author →KAKEN DB
Tsuda, Masumi Browse this author →KAKEN DB
Tanaka, Shinya Browse this author →KAKEN DB
Kurokawa, Takayuki Browse this author →KAKEN DB
Gong, Jian Ping Browse this author →KAKEN DB
Keywords: Chitin
double-network hydrogel
modulus
strength
toughness
tissue repairing materials
Issue Date: 12-Oct-2020
Publisher: American Chemical Society(ACS)
Journal Title: Biomacromolecules
Volume: 21
Issue: 10
Start Page: 4220
End Page: 4230
Publisher DOI: 10.1021/acs.biomac.0c01003
Abstract: Chitin is a biopolymer, which has been proven to be a biomedical material candidate, yet the weak mechanical properties seriously limit their potentials. In this work, a chitin-based double-network (DN) hydrogel has been designed as a potential superficial repairing material. The hydrogel was synthesized through a double-network (DN) strategy composing hybrid regenerated chitin nanofiber (RCN)-poly (ethylene glycol diglycidyl ether) (PEGDE) as the first network and polyacrylamide (PAAm) as the second network. The hybrid RCN-PEGDE/PAAm DN hydrogel was strong and tough, possessing Young’s modulus (elasticity) E 0.097 ± 0.020 MPa, fracture stress σf 0.449 ± 0.025 MPa, and work of fracture Wf 5.75 ± 0.35 MJ·m–3. The obtained DN hydrogel was strong enough for surgical requirements in the usage of soft tissue scaffolds. In addition, chitin endowed the DN hydrogel with good bacterial resistance and accelerated fibroblast proliferation, which increased the NIH3T3 cell number by nearly five times within 3 days. Subcutaneous implantation studies showed that the DN hydrogel did not induce inflammation after 4 weeks, suggesting a good biosafety in vivo. These results indicated that the hybrid RCN-PEGDE/PAAm DN hydrogel had great prospect as a rapid soft-tissue-repairing material.
Rights: This document is the Accepted Manuscript version of a Published Work that appeared in final form in Biomacromolecules, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acs.biomac.0c01003.
Type: article (author version)
URI: http://hdl.handle.net/2115/82976
Appears in Collections:生命科学院・先端生命科学研究院 (Graduate School of Life Science / Faculty of Advanced Life Science) > 雑誌発表論文等 (Peer-reviewed Journal Articles, etc)

Submitter: 龔 剣萍 (Gong Jian Ping)

Export metadata:

OAI-PMH ( junii2 , jpcoar_1.0 )

MathJax is now OFF:


 

 - Hokkaido University