HUSCAP logo Hokkaido Univ. logo

Hokkaido University Collection of Scholarly and Academic Papers >
Graduate School of Fisheries Sciences / Faculty of Fisheries Sciences >
Peer-reviewed Journal Articles, etc >

Dynamic body acceleration improves mapping of at-sea foraging behavior in black-tailed gulls Larus crassirostris

Files in This Item:

The file(s) associated with this item can be obtained from the following URL:

Title: Dynamic body acceleration improves mapping of at-sea foraging behavior in black-tailed gulls Larus crassirostris
Authors: Ma, Rui Browse this author
Kazama, Kentaro Browse this author
Yasutake, Yogi C. Browse this author
Kazama, Mami T. Browse this author
Tsukamoto, Shota Browse this author
Watanuki, Yutaka Browse this author →KAKEN DB
Keywords: accelerometer
area-restricted search (ARS)
behavior classification
GPS tracking
marine important bird and biodiversity areas
Issue Date: 13-Oct-2022
Publisher: John Wiley & Sons
Journal Title: Journal of Avian Biology
Start Page: e02869
Publisher DOI: 10.1111/jav.02869
Abstract: Areas at which seabirds forage intensively can be discriminated by tracking the individuals' at-sea movements. However, such tracking data may not accurately reflect the birds' exact foraging locations. In addition to tracking data, gathering information on the dynamic body acceleration of individual birds may refine inferences on their foraging activity. Our aim was to classify the foraging behaviors of surface-feeding seabirds using data on their body acceleration and use this signal to discriminate areas where they forage intensively. Accordingly, we recorded the foraging movements and body acceleration data from seven and ten black-tailed gulls Larus crassirostris in 2017 and 2018, respectively, using GPS loggers and accelerometers. By referring to video footage of flying and foraging individuals, we were able to classify flying (flapping flight, gliding and hovering), foraging (surface plunging, hop plunging and swimming) and maintenance (drifting, preening, etc.) behaviors using the speed, body angle and cycle and amplitude of body acceleration of the birds. Foraging areas determined from acceleration data corresponded roughly with sections of low speed and area-restricted searching (ARS) identified from the GPS tracks. However, this study suggests that the occurrence of foraging behaviors may be overestimated based on low-speed trip sections, because birds may exhibit long periods of reduced movement devoted to maintenance. Opposite, the ARS-based approach may underestimate foraging behaviors since birds can forage without conducting an ARS. Therefore, our results show that the combined use of accelerometers and GPS tracking helps to adequately determine the important foraging areas of black-tailed gulls. Our approach may contribute to better discriminate ecologically or biologically significant areas in marine environments.
Type: article
Appears in Collections:水産科学院・水産科学研究院 (Graduate School of Fisheries Sciences / Faculty of Fisheries Sciences) > 雑誌発表論文等 (Peer-reviewed Journal Articles, etc)

Export metadata:

OAI-PMH ( junii2 , jpcoar_1.0 )

MathJax is now OFF:


 - Hokkaido University