HUSCAP logo Hokkaido Univ. logo

Hokkaido University Collection of Scholarly and Academic Papers >
Institute of Low Temperature Science >
Peer-reviewed Journal Articles, etc >

Impact of a Large Shallow Semi‐Enclosed Lagoon on Freshwater Exchange Across an Inlet Channel

This item is licensed under:Creative Commons Attribution-NonCommercial 4.0 International

Files in This Item:
JGR Oceans - 2023 - Kida - Impact of a Large Shallow Semi‐Enclosed Lagoon on Freshwater Exchange Across an Inlet Channel.pdf7.94 MBPDFView/Open
Please use this identifier to cite or link to this item:http://hdl.handle.net/2115/91140

Title: Impact of a Large Shallow Semi‐Enclosed Lagoon on Freshwater Exchange Across an Inlet Channel
Authors: Kida, Shinichiro Browse this author
Tanaka, Kiyoshi Browse this author
Isada, Tomonori Browse this author
Nakamura, Tomohiro Browse this author →KAKEN DB
Issue Date: 27-Dec-2023
Publisher: American Geophysical Union
Journal Title: Journal of Geophysical Research: Oceans
Volume: 129
Issue: 1
Start Page: e2023JC019755
Publisher DOI: 10.1029/2023JC019755
Abstract: The impact of a large shallow semi-enclosed lagoon on freshwater exchange across an inlet channel is investigated using an idealized numerical model. Lagoons are often found between a river mouth and the ocean; we focus on those where the river discharge rate is small and the inlet channel is narrower and deeper than the lagoon. Tides generate freshwater and oceanic-water plumes across the channel; a stratified freshwater plume forms in the ocean from the late ebb to early flood phase, while a vertically well-mixed oceanic-water plume forms in the lagoon from the late flood to early ebb phase. The shallow depth of the lagoon increases the flow speed of the oceanic-water plume, which results in the formation of a sharp and vertically well-mixed salinity front within the lagoon. When this front moves toward the ocean during the ebb phase, vertical mixing increases where the bathymetry deepens and freshwater encounters oceanic water below. Without a dredged bottom slope, the impact of mixing would be greatly reduced within the shallow lagoon and channel, as the shallow depth would limit the subsurface intrusion of oceanic water. The narrow channel further causes the flow to converge and accelerate, enhancing both internal shear-driven and bottom boundary-layer mixing at the channel and increasing freshwater plume thickness where it enters the ocean. Sensitivity experiments showed that the role of tidal pumping in freshwater exchange across the channel increases when the lagoon area and tidal mixing increase and when the estuarine Richardson number decreases.
Rights: https://creativecommons.org/licenses/by-nc/4.0/
Type: article
URI: http://hdl.handle.net/2115/91140
Appears in Collections:低温科学研究所 (Institute of Low Temperature Science) > 雑誌発表論文等 (Peer-reviewed Journal Articles, etc)

Submitter: 中村 知裕

Export metadata:

OAI-PMH ( junii2 , jpcoar_1.0 )

MathJax is now OFF:


 

 - Hokkaido University