HUSCAP logo Hokkaido Univ. logo

Hokkaido University Collection of Scholarly and Academic Papers >
理学院・理学研究院  >
雑誌発表論文等  >

Local mirror symmetry of curves : Yukawa couplings and genus 1

ATMP11-1.pdf440.32 kBPDF見る/開く

タイトル: Local mirror symmetry of curves : Yukawa couplings and genus 1
著者: Forbes, Brian 著作を一覧する
Jinzenji, Masao 著作を一覧する
発行日: 2007年 1月
出版者: International Press
誌名: Advances in Theoretical and Mathematical Physics
巻: 11
号: 1
開始ページ: 175
終了ページ: 197
抄録: We continue our study of equivariant local mirror symmetry of curves, i.e., mirror symmetry for Xk = O(k)⊕O(−2 − k) → P1 with torus action (λ1, λ2) on the bundle. For the antidiagonal action λ1 = −λ2, we find closed formulas for the mirror map, a rational B model Yukawa coupling and consequently Picard–Fuchs equations for all k. Moreover, we give a simple closed form for the B model genus 1 Gromov–Witten potential. For the diagonal action λ1 = λ2, we argue that the mirror symmetry computation is equivalent to that of the projective bundle P(O⊕O(k)⊕O(−2 − k)) → P1. Finally, we outline the computation of equivariant Gromov–Witten invariants for An singularities and toric tree examples via mirror symmetry.
Rights: ©2007 International Press
資料タイプ: article
出現コレクション:雑誌発表論文等 (Peer-reviewed Journal Articles, etc)

提供者: 秦泉寺 雅夫


本サイトに関するご意見・お問い合わせは repo at へお願いします。 - 北海道大学