HUSCAP logo Hokkaido Univ. logo

Hokkaido University Collection of Scholarly and Academic Papers >
Graduate School of Environmental Science / Faculty of Environmental Earth Science >
Peer-reviewed Journal Articles, etc >

Role of the Rossby Waves in the Broadening of an Eastward Jet

Files in This Item:
JPO42-3_476-494.pdf2.72 MBPDFView/Open
Please use this identifier to cite or link to this item:http://hdl.handle.net/2115/49936

Title: Role of the Rossby Waves in the Broadening of an Eastward Jet
Authors: Mizuta, Genta Browse this author →KAKEN DB
Keywords: Ocean circulation
Ocean dynamics
Rossby waves
Issue Date: Mar-2012
Publisher: American Meteorological Society
Journal Title: Journal of Physical Oceanography
Volume: 42
Issue: 3
Start Page: 476
End Page: 494
Publisher DOI: 10.1175/JPO-D-11-070.1
Abstract: To investigate the effect of the Rossby waves on an eastward jet such as the Kuroshio or Gulf Stream Extensions, a series of numerical experiments is conducted using a primitive equation model. In these experiments, an inflow and an outflow imposed on the western and eastern boundaries drive an unstable narrow jet and a broad interior flow in the western and eastern regions of the model domain, respectively. The barotropic Rossby waves are radiated from the transient region between the two regions. The eddy potential vorticity flux by the waves tends to compensate for the difference in the mean potential vorticity along mean streamlines between both sides of the transient region. Instability of the jet is insufficient for this compensation and weakens the mean potential vorticity gradient too much. Moreover, as the potential vorticity of the outflow is increased, the Rossby waves are intensified in order to compensate for the increase in the difference in the mean potential vorticity. These features strongly suggest that the Rossby waves are substantial in matching a jet with an interior flow. The speed of the waves and properties of eddies in recirculations of the jet are consistent with a two-layer analytic model, which indicates that the Rossby waves are radiated from eddies in recirculations. These eddies as well as the Rossby waves increase in amplitude with the transport of the recirculation near the surface presumably because of mean advection. Therefore, the mean potential vorticity of the interior flow, the intensity of the Rossby waves, and the transport of the recirculation change consistently with one another.
Rights: © Copyright 2012 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be “fair use” under Section 107 of the U.S. Copyright Act or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108, as revised by P.L. 94-553) does not require the AMS’s permission. Republication, systematic reproduction, posting in electronic form, such as on a web site or in a searchable database, or other uses of this material, except as exempted by the above statement, requires written permission or a license from the AMS. Additional details are provided in the AMS Copyright Policy, available on the AMS Web site located at (http://www.ametsoc.org/) or from the AMS at 617-227-2425 or copyright@ametsoc.org.
Type: article
URI: http://hdl.handle.net/2115/49936
Appears in Collections:環境科学院・地球環境科学研究院 (Graduate School of Environmental Science / Faculty of Environmental Earth Science) > 雑誌発表論文等 (Peer-reviewed Journal Articles, etc)

Submitter: 水田 元太

Export metadata:

OAI-PMH ( junii2 , jpcoar_1.0 )

MathJax is now OFF:


 

 - Hokkaido University