HUSCAP logo Hokkaido Univ. logo

Hokkaido University Collection of Scholarly and Academic Papers >
Institute of Low Temperature Science >
低温科学 = Low Temperature Science >
第72巻 >


Files in This Item:
LTS72_028.pdf7.94 MBPDFView/Open
Please use this identifier to cite or link to this item:

Title: エアロゾル生成率の増加が引き起こす積雲-層雲転移に関する予備的数値実験
Other Titles: Preliminary numerical study on the cumulus-stratus transition induced by the increase of formation rate of aerosols
Authors: 島, 伸一郎1 Browse this author →KAKEN DB
長谷川, 晃一2 Browse this author
草野, 完也3 Browse this author →KAKEN DB
Authors(alt): Shima, Shin-ichiro1
Hasegawa, Koichi2
Kusano, Kanya3
Issue Date: 31-Mar-2014
Publisher: 北海道大学低温科学研究所
Journal Title: 低温科学
Journal Title(alt): Low Temperature Science
Volume: 72
Start Page: 249
End Page: 264
Abstract: The influence of aerosol-cloud interactions on the behavior of marine stratocumulus is investigated through numerical simulations of an idealized meteorological system in which aerosols are formed continuously. The super-droplet method is used for the simulation of cloud microphysical processes, with which the time evolution of aerosol/cloud/precipitation particles is calculated in a unified manner. For the simulation of atmospheric fluid dynamical processes, the quasi-compressible approximation and the sound mode splitting method are applied. The system gradually evolves to reach its final steady state in a few days, which is irrelevant to the initial number density of aerosols. A transition of the final steady state from cumuli to strati occurs when the aerosol formation rate is increased. Because the chemical reaction in the gas phase and the liquid phase is not incorporated, the model is not detailed enough to describe aerosol-cloud interactions. Further, the numerical simulations are performed in two dimensions. For these reasons, the results obtained are still all preliminary
Description: Ⅴ. 数値モデルで観る雲・エアロゾル相互作用
Type: bulletin (article)
Appears in Collections:低温科学 = Low Temperature Science > 第72巻

Submitter: 低温科学研究所図書室

Export metadata:

OAI-PMH ( junii2 , jpcoar )


Feedback - Hokkaido University