HUSCAP logo Hokkaido Univ. logo

Hokkaido University Collection of Scholarly and Academic Papers >
Graduate School of Engineering / Faculty of Engineering >
Peer-reviewed Journal Articles, etc >

Mechanisms of trichloramine removal with activated carbon: Stoichiometric analysis with isotopically labeled trichloramine and theoretical analysis with a diffusion-reaction model

Files in This Item:
matsushita_150303.pdf374.22 kBPDFView/Open
Please use this identifier to cite or link to this item:http://hdl.handle.net/2115/58003

Title: Mechanisms of trichloramine removal with activated carbon: Stoichiometric analysis with isotopically labeled trichloramine and theoretical analysis with a diffusion-reaction model
Authors: Sakuma, Miki Browse this author
Matsushita, Taku Browse this author →KAKEN DB
Matsui, Yoshihiko Browse this author
Aki, Tomoko Browse this author
Isaka, Masahito Browse this author
Shirasaki, Nobutaka Browse this author
Keywords: Chlorinous odor
Trichloramine
Super powder activated carbon
Drinking water treatment
Issue Date: 1-Jan-2015
Publisher: Elsevier
Journal Title: Water research
Volume: 68
Start Page: 839
End Page: 848
Publisher DOI: 10.1016/j.watres.2014.10.051
PMID: 25466640
Abstract: This study investigated the mechanism by which activated carbon removes trichloramine, a byproduct of water treatment that has a strongly offensive chlorinous odor. A stoichiometrical mass balance for 15N before and after activated carbon treatment of laboratory-prepared N-15-labeled trichloramine solutions clearly revealed that the mechanism of trichloramine removal with activated carbon was not adsorption but rather reductive decomposition to nitrogen gas. There was a weak positive correlation between the surface decomposition rate constant of trichloramine and the concentration of basic functional groups on the surface of the carbon particles, the suggestion being that the trichloramine may have been reduced by sulfhydryl groups (SH) on the activated carbon surface. Efficient decomposition of trichloramine was achieved with super powdered activated carbon (SPAC), which was prepared by pulverization of commercially available PAC into very fine particles less than 1 mu m in diameter. SPAC could decompose trichloramine selectively, even when trichloramine and free chlorine were present simultaneously in water, the indication being that the strong disinfection capability of residual free chlorine could be retained even after trichloramine was effectively decomposed. The residual ratio of trichloramine after carbon contact increased somewhat at low water temperatures of 1-5 degrees C. At these low temperatures, biological treatment, the traditional method for control of a major trichloramine precursor (ammonium nitrogen), is inefficient. Even at these low temperatures, SPAC could reduce the trichloramine concentration to an acceptable level. A theoretical analysis with a diffusion-reaction model developed in the present study revealed that the increase in the trichloramine residual with decreasing water temperature was attributable to the temperature dependence of the rate of the reductive reaction rather than to the temperature dependence of the diffusive mass transfer rate.
Type: article (author version)
URI: http://hdl.handle.net/2115/58003
Appears in Collections:工学院・工学研究院 (Graduate School of Engineering / Faculty of Engineering) > 雑誌発表論文等 (Peer-reviewed Journal Articles, etc)

Submitter: 松下 拓

Export metadata:

OAI-PMH ( junii2 , jpcoar_1.0 )

MathJax is now OFF:


 

 - Hokkaido University