HUSCAP logo Hokkaido Univ. logo

Hokkaido University Collection of Scholarly and Academic Papers >
Graduate School of Science / Faculty of Science >
Peer-reviewed Journal Articles, etc >

Solvent effect on single-chain collapse of poly(methyl methacrylate) in tert-butyl alcohol

Files in This Item:
JCP118-8.pdf84.3 kBPDFView/Open
Please use this identifier to cite or link to this item:http://hdl.handle.net/2115/5858

Title: Solvent effect on single-chain collapse of poly(methyl methacrylate) in tert-butyl alcohol
Authors: Nakamura, Yoshiki Browse this author
Sasaki, Naoki Browse this author →KAKEN DB
Nakata, Mitsuo3 Browse this author →KAKEN DB
Authors(alt): 中田, 允夫3
Issue Date: Feb-2003
Publisher: American Institute of Physics
Journal Title: Journal of Chemical Physics
Volume: 118
Issue: 8
Start Page: 3861
End Page: 3866
Publisher DOI: 10.1063/1.1539841
Abstract: Kinetic and static properties of the coil–globule transition of poly(methyl methacrylate) (PMMA) in pure tert-butyl alcohol were determined by static light scattering and compared with those of PMMA in the mixed solvent tert-butyl alcohol+water(2.5 vol %) in order to examine the effect of water on the chain collapse. The measurements were carried out for the molecular weight M×10–6 = 4.1 and 12.2 in the concentration range of 0.6×10–4–2.6×10–4 g/cm3, and the mean-square radius of gyration s2 was determined as a function of the time after an abrupt decrease of temperature. PMMA chains collapsed to equilibrium globules within 90 min after quenching for M = 1.22×107 and within 30 min for M = 4.1×106. Chain aggregation due to phase separation became noticeable after the collapse of the chain because of an increase of observed molecular weight. For PMMA in the mixed solvent tert-butyl alcohol+water(2.5 vol %), the chain collapse process has been observed for periods from hours to weeks depending on the molecular weight and temperature, and the chain aggregation was negligibly small in the chain collapse process. The expansion factor 2 = s2/s20 obtained for fully collapsed chains in pure tert-butyl alcohol was represented by the theoretical prediction 3––C(–3–1) = B(1–/T)M1/2 with the coefficients of B = 0.0179 and C = 0.054. For PMMA in the mixed solvent, the coil–globule transition curve has been expressed by the same equation with B = 0.0164 and C = 0.049, close to the above values. The small amount of water in the mixed solvent caused a drastic slowdown in the chain-collapse rate but had little effect on the coil–globule transition curve.
Rights: Copyright © 2003 American Institute of Physics
Relation: http://www.aip.org/
Type: article
URI: http://hdl.handle.net/2115/5858
Appears in Collections:理学院・理学研究院 (Graduate School of Science / Faculty of Science) > 雑誌発表論文等 (Peer-reviewed Journal Articles, etc)

Submitter: 中田 允夫

Export metadata:

OAI-PMH ( junii2 , jpcoar_1.0 )

MathJax is now OFF:


 

 - Hokkaido University