HUSCAP logo Hokkaido Univ. logo

Hokkaido University Collection of Scholarly and Academic Papers >
Graduate School of Science / Faculty of Science >
Peer-reviewed Journal Articles, etc >

Direction-Specific Adaptation in Neuronal and Behavioral Responses of an Insect Mechanosensory System

This item is licensed under:Creative Commons Attribution 4.0 International

Files in This Item:
11644.full.pdf2.3 MBPDFView/Open
Please use this identifier to cite or link to this item:http://hdl.handle.net/2115/60587

Title: Direction-Specific Adaptation in Neuronal and Behavioral Responses of an Insect Mechanosensory System
Authors: Ogawa, Hiroto Browse this author
Oka, Kotaro Browse this author
Keywords: calcium imaging
dendritic integration
directional selectivity
insect
stimulus-specific adaptation
synaptic depression
Issue Date: 19-Aug-2015
Publisher: Society for Neuroscience
Journal Title: Journal of neuroscience
Volume: 35
Issue: 33
Start Page: 11644
End Page: 11655
Publisher DOI: 10.1523/JNEUROSCI.1378-15.2015
PMID: 26290241
Abstract: Stimulus-specific adaptation (SSA) is considered to be the neural underpinning of habituation to frequent stimuli and novelty detection. However, neither the cellular mechanism underlying SSA nor the link between SSA-like neuronal plasticity and behavioral modulation is well understood. The wind-detection system in crickets is one of the best models for investigating the neural basis of SSA. We found that crickets exhibit stimulus-direction-specific adaptation in wind-elicited avoidance behavior. Repetitive air currents inducing this behavioral adaptation reduced firings to the stimulus and the amplitude of excitatory synaptic potentials in wind-sensitive giant interneurons (GIs) related to the avoidance behavior. Injection of a Ca2+ chelator into GIs diminished both the attenuation of firings and the synaptic depression induced by the repetitive stimulation, suggesting that adaptation of GIs induced by this stimulation results in Ca2+-mediated modulation of postsynaptic responses, including postsynaptic short-term depression. Some types of GIs showed specific adaptation to the direction of repetitive stimuli, resulting in an alteration of their directional tuning curves. The types of GIs for which directional tuning was altered displayed heterogeneous direction selectivity in their Ca2+ dynamics that was restricted to a specific area of dendrites. In contrast, other types of GIs with constant directionality exhibited direction-independent global Ca2+ elevation throughout the dendritic arbor. These results suggest that depression induced by local Ca2+ accumulation at repetitively activated synapses of key neurons underlies direction-specific behavioral adaptation. This input-selective depression mediated by heterogeneous Ca2+ dynamics could confer the ability to detect novelty at the earliest stages of sensory processing in crickets.
Rights: https://creativecommons.org/licenses/by/4.0/
Type: article
URI: http://hdl.handle.net/2115/60587
Appears in Collections:理学院・理学研究院 (Graduate School of Science / Faculty of Science) > 雑誌発表論文等 (Peer-reviewed Journal Articles, etc)

Submitter: 小川 宏人

Export metadata:

OAI-PMH ( junii2 , jpcoar_1.0 )

MathJax is now OFF:


 

 - Hokkaido University