HUSCAP logo Hokkaido Univ. logo

Hokkaido University Collection of Scholarly and Academic Papers >
Graduate School of Information Science and Technology / Faculty of Information Science and Technology >
Peer-reviewed Journal Articles, etc >

Cross-temporal Link Prediction

Files in This Item:
icdm2011.pdf196.02 kBPDFView/Open
Please use this identifier to cite or link to this item:

Title: Cross-temporal Link Prediction
Authors: Oyama, Satoshi Browse this author →KAKEN DB
Hayashi, Kohei Browse this author
Kashima, Hisashi Browse this author
Keywords: link prediction
temporal data
entity resolution
social network analysis
dimension reduction
Issue Date: 2011
Publisher: IEEE (Institute of Electrical and Electronics Engineers)
Citation: Data Mining (ICDM), 2011 IEEE 11th International Conference on
Start Page: 1188
End Page: 1193
Publisher DOI: 10.1109/ICDM.2011.45
Abstract: The increasing interest in dynamically changing networks has led to growing interest in a more general link prediction problem called temporal link prediction in the data mining and machine learning communities. However, only links in identical time frames are considered in temporal link prediction. We propose a new link prediction problem called cross-temporal link prediction in which the links among nodes in different time frames are inferred. A typical example of cross-temporal link prediction is cross-temporal entity resolution to determine the identity of real entities represented by data objects observed in different time periods. In dynamic environments, the features of data change over time, making it difficult to identify cross-temporal links by directly comparing observed data. Other examples of cross-temporal links are asynchronous communications in social networks such as Face book and Twitter, where a message is posted in reply to a previous message. We adopt a dimension reduction approach to cross-temporal link prediction, that is, data objects in different time frames are mapped into a common low-dimensional latent feature space, and the links are identified on the basis of the distance between the data objects. The proposed method uses different low-dimensional feature projections in different time frames, enabling it to adapt to changes in the latent features over time. Using multi-task learning, it jointly learns a set of feature projection matrices from the training data, given the assumption of temporal smoothness of the projections. The optimal solutions are obtained by solving a single generalized eigenvalue problem. Experiments using a real-world set of bibliographic data for cross-temporal entity resolution showed that introducing time-dependent feature projections improves the accuracy of link prediction.
Conference Name: IEEE International Conference on Data Mining (ICDM)
Conference Sequence: 11
Conference Place: Vancouver
Rights: © 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Type: proceedings (author version)
Appears in Collections:情報科学院・情報科学研究院 (Graduate School of Information Science and Technology / Faculty of Information Science and Technology) > 雑誌発表論文等 (Peer-reviewed Journal Articles, etc)

Submitter: 小山 聡

Export metadata:

OAI-PMH ( junii2 , jpcoar_1.0 )

MathJax is now OFF:


 - Hokkaido University