HUSCAP logo Hokkaido Univ. logo

Hokkaido University Collection of Scholarly and Academic Papers >
情報科学研究科  >
雑誌発表論文等  >

Machine-learning prediction of the d-band center for metals and bimetals

R1600788-1A_takigawa_bw.pdf363.43 kBPDF見る/開く

タイトル: Machine-learning prediction of the d-band center for metals and bimetals
著者: Takigawa, Ichigaku 著作を一覧する
Shimizu, Ken-ichi 著作を一覧する
Tsuda, Koji 著作を一覧する
Takakusagi, Satoru 著作を一覧する
発行日: 2016年 5月
出版者: Royal Society of Chemistry
誌名: RSC advances
巻: 6
号: 58
開始ページ: 52587
終了ページ: 52595
出版社 DOI: 10.1039/c6ra04345c
抄録: The d-band center for metals has been widely used in order to understand activity trends in metal-surface-catalyzed reactions in terms of the linear Bronsted-Evans-Polanyi relation and Hammer-Norskov d-band model. In this paper, the d-band centers for eleven metals (Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Ir, Pt, Au) and their pairwise bimetals for two different structures (1% metal doped- or overlayer-covered metal surfaces) are statistically predicted using machine learning methods from readily available values as descriptors for the target metals (such as the density and the enthalpy of fusion of each metal). The predictive accuracy of four regression methods with different numbers of descriptors and different test-set/training-set ratios are quantitatively evaluated using statistical cross validations. It is shown that the d-band centers are reasonably well predicted by the gradient boosting regression (GBR) method with only six descriptors, even when we predict 75% of the data from only 25% given for training (average root mean square error (RMSE) < 0.5 eV). This demonstrates a potential use of machine learning methods for predicting the activity trends of metal surfaces with a negligible CPU time compared to first-principles methods.
資料タイプ: article (author version)
出現コレクション:雑誌発表論文等 (Peer-reviewed Journal Articles, etc)

提供者: 瀧川 一学


本サイトに関するご意見・お問い合わせは repo at へお願いします。 - 北海道大学