HUSCAP logo Hokkaido Univ. logo

Hokkaido University Collection of Scholarly and Academic Papers >
Graduate School of Science / Faculty of Science >
Peer-reviewed Journal Articles, etc >

Storm-Track Response to SST Fronts in the Northwestern Pacific Region in an AGCM

Files in This Item:
JC30 1081-1102.pdf8.58 MBPDFView/Open
Please use this identifier to cite or link to this item:http://hdl.handle.net/2115/66936

Title: Storm-Track Response to SST Fronts in the Northwestern Pacific Region in an AGCM
Authors: Kuwano-Yoshida, Akira Browse this author
Minobe, Shoshiro Browse this author →KAKEN DB
Keywords: North Pacific Ocean
Sea surface temperature
Storm tracks
Atmosphere-ocean interaction
Climate models
Issue Date: 1-Feb-2017
Publisher: American Meteorological Society
Journal Title: Journal of Climate
Volume: 30
Issue: 3
Start Page: 1081
End Page: 1102
Publisher DOI: 10.1175/JCLI-D-16-0331.1
Abstract: The storm-track response to sea surface temperature (SST) fronts in the northwestern Pacific region is investigated using an atmospheric general circulation model with a 50-km horizontal resolution. The following two experiments are conducted: one with 0.25 degrees daily SST data (CNTL) and the other with smoothed SSTs over an area covering SST fronts associated with the Kuroshio, the Kuroshio Extension, the Oyashio, and the subpolar front (SMTHK). The storm track estimated from the local deepening rate of surface pressure (LDR) exhibits a prominent peak in this region in CNTL in January, whereas the storm-track peak weakens and moves eastward in SMTHK. Storm-track differences between CNTL and SMTHK are only found in explosive deepening events with LDR larger than 1 hPa h(-1). A diagnostic equation of LDR suggests that latent heat release associated with large-scale condensation contributes to the storm-track enhancement. The SST fronts also affect the large-scale atmospheric circulation over the northeastern Pacific Ocean. The jet stream in the upper troposphere tends to meander northward, which is associated with positive sea level pressure (SLP) anomalies in CNTL, whereas the jet stream flows zonally in SMTHK. A composite analysis for the northwestern Pacific SLP anomaly suggests that frequent explosive cyclone development in the northwestern Pacific in CNTL causes downstream positive SLP anomalies over the Gulf of Alaska. Cyclones in SMTHK developing over the northeastern Pacific enhance the moisture flux along the west coast of North America, increasing precipitation in that region.
Rights: © Copyright 2017 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be “fair use” under Section 107 of the U.S. Copyright Act September 2010 Page 2 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108, as revised by P.L. 94-553) does not require the AMS’s permission. Republication, systematic reproduction, posting in electronic form, such as on a web site or in a searchable database, or other uses of this material, except as exempted by the above statement, requires written permission or a license from the AMS. Additional details are provided in the AMS Copyright Policy, available on the AMS Web site located at (https://www.ametsoc.org/) or from the AMS at 617-227-2425 or copyrights@ametsoc.org.
Type: article
URI: http://hdl.handle.net/2115/66936
Appears in Collections:理学院・理学研究院 (Graduate School of Science / Faculty of Science) > 雑誌発表論文等 (Peer-reviewed Journal Articles, etc)

Submitter: 見延 庄士郎

Export metadata:

OAI-PMH ( junii2 , jpcoar )

MathJax is now OFF:


 

Feedback - Hokkaido University