HUSCAP logo Hokkaido Univ. logo

Hokkaido University Collection of Scholarly and Academic Papers >
Graduate School of Science / Faculty of Science >
Peer-reviewed Journal Articles, etc >

YUCCA9-Mediated Auxin Biosynthesis and Polar Auxin Transport Synergistically Regulate Regeneration of Root Systems Following Root Cutting

This item is licensed under: Creative Commons Attribution 4.0 International

Files in This Item:
PCP58-10 1710–1723.pdf1.63 MBPDFView/Open
Supplementary Figures and Tables.pdf2.69 MBPDFView/Open
Please use this identifier to cite or link to this item:

Title: YUCCA9-Mediated Auxin Biosynthesis and Polar Auxin Transport Synergistically Regulate Regeneration of Root Systems Following Root Cutting
Authors: Xu, Dongyang Browse this author
Miao, Jiahang Browse this author
Yumoto, Emi Browse this author
Yokota, Takao Browse this author
Asahina, Masashi Browse this author
Watahiki, Masaaki Browse this author
Keywords: Auxin biosynthesis
Lateral root
Polar auxin transport
Root pruning
Issue Date: 1-Oct-2017
Publisher: Oxford University Press
Journal Title: Plant and Cell Physiology
Volume: 58
Issue: 10
Start Page: 1710
End Page: 1723
Publisher DOI: 10.1093/pcp/pcx107
Abstract: Recovery of the root system following physical damage is an essential issue for plant survival. An injured root system is able to regenerate by increases in lateral root (LR) number and acceleration of root growth. The horticultural technique of root pruning (root cutting) is an application of this response and is a common garden technique for controlling plant growth. Although root pruning is widely used, the molecular mechanisms underlying the subsequent changes in the root system are poorly understood. In this study, root pruning was employed as a model system to study the molecular mechanisms of root system regeneration. Notably, LR defects in wild-type plants treated with inhibitors of polar auxin transport (PAT) or in the auxin signaling mutant auxin/indole-3-acetic acid19/massugu2 were recovered by root pruning. Induction of IAA19 following root pruning indicates an enhancement of auxin signaling by root pruning. Endogenous levels of IAA increased after root pruning, and YUCCA9 was identified as the primary gene responsible. PAT-related genes were induced after root pruning, and the YUCCA inhibitor yucasin suppressed root regeneration in PAT-related mutants. Therefore, we demonstrate the crucial role of YUCCA9, along with other redundant YUCCA family genes, in the enhancement of auxin biosynthesis following root pruning. This further enhances auxin transport and activates downstream auxin signaling genes, and thus increases LR number.
Type: article
Appears in Collections:理学院・理学研究院 (Graduate School of Science / Faculty of Science) > 雑誌発表論文等 (Peer-reviewed Journal Articles, etc)

Submitter: 綿引 雅昭

Export metadata:

OAI-PMH ( junii2 , jpcoar )

MathJax is now OFF:


 - Hokkaido University