HUSCAP logo Hokkaido Univ. logo

Hokkaido University Collection of Scholarly and Academic Papers >
情報科学研究科  >
雑誌発表論文等  >

A Novel Framework for Estimating Viewer Interest by Unsupervised Multimodal Anomaly Detection

フルテキスト
A Novel Framework for Estimating Viewer Interest by Unsupervised Multimodal Anomaly Detection.pdf7.53 MBPDF見る/開く
この文献へのリンクには次のURLを使用してください:http://hdl.handle.net/2115/68488

タイトル: A Novel Framework for Estimating Viewer Interest by Unsupervised Multimodal Anomaly Detection
著者: Sasaka, Yuma 著作を一覧する
Ogawa, Takahiro 著作を一覧する
Haseyama, Miki 著作を一覧する
キーワード: Viewer interest
unsupervised anomaly detection
facial expression
biological signals
発行日: 2018年
出版者: IEEE
誌名: IEEE Access
巻: 6
開始ページ: 8340
終了ページ: 8350
出版社 DOI: 10.1109/ACCESS.2018.2804925
抄録: A reliable method to estimate viewer interest is highly sought after for human-centered video information retrieval. A method that estimates viewer interest while users are watching Web videos is presented in this paper. The method uses a framework for anomaly detection based on collaborative use of facial expression and biological signals such as electroencephalogram (EEG) signals. To the best of our knowledge, there have been no studies that have taken into account two actual mechanisms of the behavior of users while they arewatching Web videos. First, whereas most Web videos garner very little attention, a small number attract millions of views. Therefore, a framework for anomaly detection is newly applied to facial expression and EEG in order to model the imbalanced distribution of popularity. Second, since the number of Web videos that are labeled by users as interesting=not interesting is generally too small to estimate viewer interest by a supervised approach, the proposed method utilizes parametric techniques for anomaly detection, which estimates viewer interest in an unsupervised way. Unlike some related studies for estimating viewer interest, our method takes into account actual mechanisms of the behavior of users while they are watching Web videos by utilizing parametric techniques for anomaly detection. Then viewer interest can be estimated on the basis of an anomaly score calculated from our proposed method. Consequently, successful estimation of viewer interest based on a framework for anomaly detection, via collaborative use of facial expression and biological signals, becomes feasible.
Rights: © 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
資料タイプ: article
URI: http://hdl.handle.net/2115/68488
出現コレクション:雑誌発表論文等 (Peer-reviewed Journal Articles, etc)

提供者: 小川 貴弘

 

本サイトに関するご意見・お問い合わせは repo at lib.hokudai.ac.jp へお願いします。 - 北海道大学