HUSCAP logo Hokkaido Univ. logo

Hokkaido University Collection of Scholarly and Academic Papers >
Graduate School of Engineering / Faculty of Engineering >
Peer-reviewed Journal Articles, etc >

Dissolved Silica Effects on Adsorption and Co-Precipitation of Sb(III) and Sb(V) with Ferrihydrite

This item is licensed under:Creative Commons Attribution 4.0 International

Files in This Item:
minerals-08-00101-v2.pdf943.77 kBPDFView/Open
Please use this identifier to cite or link to this item:

Title: Dissolved Silica Effects on Adsorption and Co-Precipitation of Sb(III) and Sb(V) with Ferrihydrite
Authors: Zhou, Shuang Browse this author
Sato, Tsutomu Browse this author →KAKEN DB
Otake, Tsubasa Browse this author
Keywords: antimony
Issue Date: 5-Mar-2018
Publisher: MDPI
Journal Title: Minerals
Volume: 8
Issue: 3
Start Page: 101
Publisher DOI: 10.3390/min8030101
Abstract: Elevated antimony concentrations in aqueous environments from anthropogenic sources are becoming of global concern. In this respect iron oxides are known to strongly adsorb aqueous antimony species with different oxidation states, but the effect of silica on the removal characteristics is not well understood despite being a common component in the environment. In this study, ferrihydrite was synthesized at various Si/Fe molar ratios to investigate its adsorption and co-precipitation behaviors with aqueous antimony anionic species, Sb(III) and Sb(V). The X-ray diffraction analyses of the precipitates showed two broad diffraction features at approximately 35° and 62° 2θ, which are characteristics of 2-line ferrihydrite, but no significant shifts in peak positions in the ferrihydrite regardless of the Si/Fe ratios. The infrared spectra showed a sharp band at ~930 cm−1, corresponding to asymmetric stretching vibrations of Si–O–Fe bonds which increased in intensity with increasing Si/Fe molar ratios. Further, the surface charge on the precipitates became more negative with increasing Si/Fe molar ratios. The adsorption experiments indicated that Sb(V) was preferentially adsorbed under acidic conditions which decreased dramatically with increasing pH while the adsorption rate of Sb(III) ions was independent of pH. However, the presence of silica suppressed the adsorption of both Sb(III) and Sb(V) ions. The results showed that Sb(III) and Sb(V) ions were significantly inhibited by co-precipitation with ferrihydrite even in the presence of silica by isomorphous substitution in the ferrihydrite crystal structure.
Rights: © 2018 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution License (
Type: article
Appears in Collections:工学院・工学研究院 (Graduate School of Engineering / Faculty of Engineering) > 雑誌発表論文等 (Peer-reviewed Journal Articles, etc)

Submitter: 佐藤 努

Export metadata:

OAI-PMH ( junii2 , jpcoar_1.0 )

MathJax is now OFF:


 - Hokkaido University