HUSCAP logo Hokkaido Univ. logo

Hokkaido University Collection of Scholarly and Academic Papers >
Graduate School of Engineering / Faculty of Engineering >
Peer-reviewed Journal Articles, etc >

Identifying, counting, and characterizing superfine activated-carbon particles remaining after coagulation, sedimentation, and sand filtration

This item is licensed under: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

Files in This Item:
Identifying, counting, and characterizing superfine activated-carbon 2 p....pdf840.36 kBPDFView/Open
Please use this identifier to cite or link to this item:http://hdl.handle.net/2115/78752

Title: Identifying, counting, and characterizing superfine activated-carbon particles remaining after coagulation, sedimentation, and sand filtration
Authors: Nakazawa, Yoshifumi Browse this author
Matsui, Yoshihiko Browse this author →KAKEN DB
Hanamura, Yusuke Browse this author
Shinno, Koki Browse this author
Shirasaki, Nobutaka Browse this author
Matsushita, Taku Browse this author →KAKEN DB
Keywords: SPAC
PAC
Image analysis
Filtrate
Zeta potential
Issue Date: 1-Jul-2018
Publisher: Elsevier
Journal Title: Water Research
Volume: 138
Start Page: 160
End Page: 168
Publisher DOI: 10.1016/j.watres.2018.03.046
Abstract: Superfine powdered activated carbon (SPAC; particle diameter ∼1 μm) has greater adsorptivity for organic molecules than conventionally sized powdered activated carbon (PAC). Although SPAC is currently used in the pretreatment to membrane filtration at drinking water purification plants, it is not used in conventional water treatment consisting of coagulation–flocculation, sedimentation, and rapid sand filtration (CSF), because it is unclear whether CSF can adequately remove SPAC from the water. In this study, we therefore investigated the residual SPAC particles in water after CSF treatment. First, we developed a method to detect and quantify trace concentration of carbon particles in the sand filtrate. This method consisted of 1) sampling particles with a membrane filter and then 2) using image analysis software to manipulate a photomicrograph of the filter so that black spots with a diameter >0.2 μm (considered to be carbon particles) could be visualized. Use of this method revealed that CSF removed a very high percentage of SPAC: approximately 5-log in terms of particle number concentrations and approximately 6-log in terms of particle volume concentrations. When waters containing 7.5-mg/L SPAC and 30-mg/L PAC, concentrations that achieved the same adsorption performance, were treated, the removal rate of SPAC was somewhat superior to that of PAC, and the residual particle number concentrations for SPAC and PAC were at the same low level (100–200 particles/mL). Together, these results suggest that SPAC can be used in place of PAC in CSF treatment without compromising the quality of the filtered water in terms of particulate matter contamination. However, it should be noted that the activated carbon particles after sand filtration were smaller in terms of particle size and were charge-neutralized to a lesser extent than the activated carbon particles before sand filtration. Therefore, the tendency of small particles to escape in the filtrate would appear to be related to the fact that their small size leads to a low destabilization rate during the coagulation process and a low collision rate during the flocculation and filtration processes.
Rights: © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
Type: article (author version)
URI: http://hdl.handle.net/2115/78752
Appears in Collections:工学院・工学研究院 (Graduate School of Engineering / Faculty of Engineering) > 雑誌発表論文等 (Peer-reviewed Journal Articles, etc)

Export metadata:

OAI-PMH ( junii2 , jpcoar )

MathJax is now OFF:


 

 - Hokkaido University