HUSCAP logo Hokkaido Univ. logo

Hokkaido University Collection of Scholarly and Academic Papers >
Graduate School of Engineering / Faculty of Engineering >
Peer-reviewed Journal Articles, etc >

Molecular dynamics study on characteristics of reflection and condensation molecules at vapor–liquid equilibrium state

This item is licensed under:Creative Commons Attribution 4.0 International

Files in This Item:

The file(s) associated with this item can be obtained from the following URL:

Title: Molecular dynamics study on characteristics of reflection and condensation molecules at vapor–liquid equilibrium state
Authors: Tabe, Hirofumi Browse this author
Kobayashi, Kazumichi Browse this author →KAKEN DB
Fujii, Hiroyuki Browse this author →KAKEN DB
Watanabe, Masao Browse this author →KAKEN DB
Issue Date: 16-Mar-2021
Publisher: The Public Library of Science
Journal Title: PLOS ONE
Volume: 16
Issue: 3
Start Page: e0248660
Publisher DOI: 10.1371/journal.pone.0248660
Abstract: The kinetic boundary condition (KBC) represents the evaporation or condensation of molecules at the vapor–liquid interface for molecular gas dynamics (MGD). When constructing the KBC, it is necessary to classify molecular motions into evaporation, condensation, and reflection in molecular-scale simulation methods. Recently, a method that involves setting the vapor boundary and liquid boundary has been used for classifying molecules. The position of the vapor boundary is related to the position where the KBC is applied in MGD analyses, whereas that of the liquid boundary has not been uniquely determined. Therefore, in this study, we conducted molecular dynamics simulations to discuss the position of the liquid boundary for the construction of KBCs. We obtained some variables that characterize molecular motions such as the positions that the molecules reached and the time they stayed in the vicinity of the interface. Based on the characteristics of the molecules found from these variables, we investigated the valid position of the liquid boundary. We also conducted an investigation on the relationship between the condensation coefficient and the molecular incident velocity from the vapor phase to the liquid phase. The dependence of the condensation coefficient on the incident velocity of molecules was confirmed, and the value of the condensation coefficient becomes small in the low-incident-velocity range. Furthermore, we found that the condensation coefficient in the non-equilibrium state shows almost the same value as that in the equilibrium state, although the corresponding velocity distribution functions of the incident velocity significantly differ from each other.
Type: article
Appears in Collections:工学院・工学研究院 (Graduate School of Engineering / Faculty of Engineering) > 雑誌発表論文等 (Peer-reviewed Journal Articles, etc)

Submitter: 小林 一道

Export metadata:

OAI-PMH ( junii2 , jpcoar_1.0 )

MathJax is now OFF:


 - Hokkaido University