HUSCAP logo Hokkaido Univ. logo

Hokkaido University Collection of Scholarly and Academic Papers >
Graduate School of Engineering / Faculty of Engineering >
Peer-reviewed Journal Articles, etc >

Mathematical Modeling of Outdoor Natural Weathering of Polycarbonate: Regional Characteristics of Degradation Behaviors

This item is licensed under:Creative Commons Attribution 4.0 International

Files in This Item:

The file(s) associated with this item can be obtained from the following URL: https://doi.org/10.3390/polym13050820


Title: Mathematical Modeling of Outdoor Natural Weathering of Polycarbonate: Regional Characteristics of Degradation Behaviors
Authors: Ishida, Takato Browse this author
Kitagaki, Ryoma Browse this author →KAKEN DB
Keywords: polycarbonate
outdoor aging
degradation rate
climate characteristics
Issue Date: Mar-2021
Publisher: MDPI
Journal Title: Polymers
Volume: 13
Issue: 5
Start Page: 820
Publisher DOI: 10.3390/polym13050820
Abstract: Many natural exposure sites have been developed to ensure the reliability of materials intended for outdoor use. However, the effects of local climate on aging have not been completely understood. This study aimed to elucidate the regional characteristics of natural aging. Non-stabilized and stabilized polycarbonates were monitored in terms of their appearance (yellowing and loss of gloss) during natural weathering at five exposure sites (Tokyo, Kagoshima, Okinawa, Florida, and Arizona) in conjunction with climate fluctuation for up to 24 months. Three approaches were employed to characterize the natural aging behaviors: (i) modeling the rate function of degradation, (ii) evaluating the contribution ratio of individual degradational factors, and (iii) estimating the "synchronicity" by cross-correlation analysis with the climate dataset. The aging rates were the highest in Arizona and lowest in Kagoshima among the five exposure sites. First, prediction curves were constructed from the degradation rate function (variables: UV irradiation, temperature, and humidity), and these curves were found to agree well with the measured aging behaviors. Second, the exposure data in Arizona demonstrated strong temperature dependence, while those in Okinawa and Florida had stronger dependence on UV irradiation compared to other sites. Lastly, the synchronicity between UV irradiation and temperature was the highest in Arizona and lowest in Kagoshima, which can explain the significantly faster deterioration in Arizona and the slow deterioration in Kagoshima.
Rights: https://creativecommons.org/licenses/by/4.0/
Type: article
URI: http://hdl.handle.net/2115/81270
Appears in Collections:工学院・工学研究院 (Graduate School of Engineering / Faculty of Engineering) > 雑誌発表論文等 (Peer-reviewed Journal Articles, etc)

Export metadata:

OAI-PMH ( junii2 , jpcoar_1.0 )

MathJax is now OFF:


 

 - Hokkaido University