HUSCAP logo Hokkaido Univ. logo

Hokkaido University Collection of Scholarly and Academic Papers >
Graduate School of Information Science and Technology / Faculty of Information Science and Technology >
Peer-reviewed Journal Articles, etc >

Inferring ecosystem networks as information flows

Files in This Item:

The file(s) associated with this item can be obtained from the following URL:

Title: Inferring ecosystem networks as information flows
Authors: Li, Jie Browse this author
Convertino, Matteo Browse this author
Issue Date: 29-Mar-2021
Publisher: Nature Research
Journal Title: Scientific reports
Volume: 11
Issue: 1
Start Page: 7094
Publisher DOI: 10.1038/s41598-021-86476-9
Abstract: The detection of causal interactions is of great importance when inferring complex ecosystem functional and structural networks for basic and applied research. Convergent cross mapping (CCM) based on nonlinear state-space reconstruction made substantial progress about network inference by measuring how well historical values of one variable can reliably estimate states of other variables. Here we investigate the ability of a developed optimal information flow (OIF) ecosystem model to infer bidirectional causality and compare that to CCM. Results from synthetic datasets generated by a simple predator-prey model, data of a real-world sardine-anchovy-temperature system and of a multispecies fish ecosystem highlight that the proposed OIF performs better than CCM to predict population and community patterns. Specifically, OIF provides a larger gradient of inferred interactions, higher point-value accuracy and smaller fluctuations of interactions and alpha -diversity including their characteristic time delays. We propose an optimal threshold on inferred interactions that maximize accuracy in predicting fluctuations of effective alpha -diversity, defined as the count of model-inferred interacting species. Overall OIF outperforms all other models in assessing predictive causality (also in terms of computational complexity) due to the explicit consideration of synchronization, divergence and diversity of events that define model sensitivity, uncertainty and complexity. Thus, OIF offers a broad ecological information by extracting predictive causal networks of complex ecosystems from time-series data in the space-time continuum. The accurate inference of species interactions at any biological scale of organization is highly valuable because it allows to predict biodiversity changes, for instance as a function of climate and other anthropogenic stressors. This has practical implications for defining optimal ecosystem management and design, such as fish stock prioritization and delineation of marine protected areas based on derived collective multispecies assembly. OIF can be applied to any complex system and used for model evaluation and design where causality should be considered as non-linear predictability of diverse events of populations or communities.
Type: article
Appears in Collections:国際連携研究教育局 : GI-CoRE (Global Institution for Collaborative Research and Education : GI-CoRE) > 雑誌発表論文等 (Peer-reviewed Journal Articles, etc)
情報科学院・情報科学研究院 (Graduate School of Information Science and Technology / Faculty of Information Science and Technology) > 雑誌発表論文等 (Peer-reviewed Journal Articles, etc)

Export metadata:

OAI-PMH ( junii2 , jpcoar_1.0 )

MathJax is now OFF:


 - Hokkaido University