HUSCAP logo Hokkaido Univ. logo

Hokkaido University Collection of Scholarly and Academic Papers >
Graduate School of Engineering / Faculty of Engineering >
Peer-reviewed Journal Articles, etc >

Experimental Study on Sand Stabilization Using Bio-Cementation with Wastepaper Fiber Integration

Files in This Item:

The file(s) associated with this item can be obtained from the following URL:

Title: Experimental Study on Sand Stabilization Using Bio-Cementation with Wastepaper Fiber Integration
Authors: Chen, Meiqi Browse this author
Gowthaman, Sivakumar Browse this author
Nakashima, Kazunori Browse this author
Komatsu, Shin Browse this author
Kawasaki, Satoru Browse this author →KAKEN DB
Keywords: microbially-induced carbonate precipitation (MICP)
wastepaper fiber
mechanical properties
calcium carbonate
freeze-thaw durability
Issue Date: Sep-2021
Publisher: MDPI
Journal Title: Materials
Volume: 14
Issue: 18
Start Page: 5164
Publisher DOI: 10.3390/ma14185164
Abstract: Recently, green materials and technologies have received considerable attention in geotechnical engineering. One of such techniques is microbially-induced carbonate precipitation (MICP). In the MICP process, CaCO3 is achieved bio-chemically within the soil, thus enhancing the strength and stiffness. The purpose of this study is to introduce the wastepaper fiber (WPF) onto the MICP (i) to study the mechanical properties of MICP-treated sand with varying WPF content (0-8%) and (ii) to assess the freeze-thaw (FT) durability of the treated samples. Findings revealed that the ductility of the treated samples increases with the increase in WPF addition, while the highest UCS is found with a small fiber addition. The results of CaCO3 content suggest that the WPF addition enhances the immobilization of the bacteria cells, thus yielding the precipitation content. However, shear wave velocity analysis indicates that a higher addition of WPF results in rapid deterioration of the samples when subjected to freeze-thaw cycles. Microscale analysis illuminates that fiber clusters replace the solid bonding at particle contacts, leading to reduced resistance to freeze-thaw damage. Overall, the study demonstrates that as a waste material, WPF could be sustainably reused in the bio-cementation.
Type: article
Appears in Collections:工学院・工学研究院 (Graduate School of Engineering / Faculty of Engineering) > 雑誌発表論文等 (Peer-reviewed Journal Articles, etc)

Export metadata:

OAI-PMH ( junii2 , jpcoar_1.0 )

MathJax is now OFF:


 - Hokkaido University