HUSCAP logo Hokkaido Univ. logo

Hokkaido University Collection of Scholarly and Academic Papers >
Graduate School of Engineering / Faculty of Engineering >
Peer-reviewed Journal Articles, etc >

The Effects of Coexisting Copper, Iron, Cobalt, Nickel, and Zinc Ions on Gold Recovery by Enhanced Cementation via Galvanic Interactions between Zero-Valent Aluminum and Activated Carbon in Ammonium Thiosulfate Systems

Files in This Item:

The file(s) associated with this item can be obtained from the following URL: https://doi.org/10.3390/met11091352


Title: The Effects of Coexisting Copper, Iron, Cobalt, Nickel, and Zinc Ions on Gold Recovery by Enhanced Cementation via Galvanic Interactions between Zero-Valent Aluminum and Activated Carbon in Ammonium Thiosulfate Systems
Authors: Jeon, Sanghee Browse this author →KAKEN DB
Bright, Sharrydon Browse this author
Park, Ilhwan Browse this author →KAKEN DB
Tabelin, Carlito Baltazar Browse this author
Ito, Mayumi Browse this author →KAKEN DB
Hiroyoshi, Naoki Browse this author →KAKEN DB
Keywords: ammonium thiosulfate
gold
cementation
galvanic interaction
zero-valent aluminum
activated carbon
Issue Date: Sep-2021
Publisher: MDPI
Journal Title: Metals
Volume: 11
Issue: 9
Start Page: 1352
Publisher DOI: 10.3390/met11091352
Abstract: The use of galvanic interactions between zero-valent aluminum (ZVAl) and activated carbon (AC) to recover gold (Au) ions is a promising technique to overcome the challenges due to the poor recovery in ammonium thiosulfate systems, but the applicability to practical Au ore processing remains elusive so far. The present study describes (1) the recovery of Au ions from low Au concentrations, which are typical concentrations used in Au ore processing; and (2) an investigation into the effects of various coexisting base metal ions that can be present in pregnant ore-leached solutions. The results showed that high Au recovery (i.e., over 85%) was obtained even at low Au concentrations under the following conditions: 1:1 of 0.15 g of ZVAl and AC with 10 mL of ammonium thiosulfate solution containing 5 mg/L of Au ions at 25 degrees C for 1 h in an anoxic atmosphere. Selected coexisting metal ions (i.e., copper, iron, cobalt, nickel, and zinc) were studied to establish their effects on Au recovery, and the results showed that the Au recovery was enhanced (about 90%) when copper ions coexist in the solution with minimal effects from other competing base metal ions.
Type: article
URI: http://hdl.handle.net/2115/83054
Appears in Collections:工学院・工学研究院 (Graduate School of Engineering / Faculty of Engineering) > 雑誌発表論文等 (Peer-reviewed Journal Articles, etc)

Export metadata:

OAI-PMH ( junii2 , jpcoar_1.0 )

MathJax is now OFF:


 

 - Hokkaido University