HUSCAP logo Hokkaido Univ. logo

Hokkaido University Collection of Scholarly and Academic Papers >
Graduate School of Information Science and Technology / Faculty of Information Science and Technology >
Peer-reviewed Journal Articles, etc >

Arbitrary polarization and orbital angular momentum generation based on spontaneously broken degeneracy in helically twisted ring-core photonic crystal fibers

Files in This Item:

The file(s) associated with this item can be obtained from the following URL: https://doi.org/10.1364/OE.432401


Title: Arbitrary polarization and orbital angular momentum generation based on spontaneously broken degeneracy in helically twisted ring-core photonic crystal fibers
Authors: Fujisawa, Takeshi Browse this author →KAKEN DB
Saitoh, Kunimasa Browse this author →KAKEN DB
Issue Date: 27-Sep-2021
Publisher: Optical Society of America
Journal Title: Optics express
Volume: 29
Issue: 20
Start Page: 31689
End Page: 31705
Publisher DOI: 10.1364/OE.432401
Abstract: Using orbital angular momentum (OAM) as a spatial information channel attracts a lot of attention due to its infinite multiplexing capability. The research on OAM carrying fibers is intensively studied and ring-core fibers are promising candidates for them. At the same time, generating OAM modes in those fibers are also important topic. Here, the evolutions of polarization states including OAM of light in helically twisted ring-core photonic crystal fibers (PCFs) are investigated for generating OAM states. The degeneracy of some of the mode sets is spontaneously broken, and the birefringence cause a geometric phase (GP) in the twisted PCFs while preserving the vectorial nature of the modes. It is demonstrated that an arbitrary polarization and OAM state can be generated by using the GP in uniformly twisted and twisted PCFs with periodical inversion. In the ring-core PCF presented in this paper, the degeneracy of HE31 and EH31 mode sets are broken, and OAM light with the topological charge of 2 and 4 can be generated. The wavelength dependence is very small compared with that of OAM generators based on long-period gratings (LPGs). Furthermore, by properly setting the period of the inversion, OAM light with different topological charges can be simultaneously generated with the same fiber structure. These results indicate that the proposed approach is effective for the generation of OAM modes with the conventional fiber modes. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
Rights: © 2021 Optical Society of America. Users may use, reuse, and build upon the article, or use the article for text or data mining, so long as such uses are for non-commercial purposes and appropriate attribution is maintained. All other rights are reserved.
Type: article
URI: http://hdl.handle.net/2115/83088
Appears in Collections:情報科学院・情報科学研究院 (Graduate School of Information Science and Technology / Faculty of Information Science and Technology) > 雑誌発表論文等 (Peer-reviewed Journal Articles, etc)

Export metadata:

OAI-PMH ( junii2 , jpcoar_1.0 )

MathJax is now OFF:


 

 - Hokkaido University