HUSCAP logo Hokkaido Univ. logo

Hokkaido University Collection of Scholarly and Academic Papers >
Graduate School of Engineering / Faculty of Engineering >
Peer-reviewed Journal Articles, etc >

Synthesis mechanism of cuprous oxide nanoparticles by atmospheric-pressure plasma electrolysis

Files in This Item:
Cu2O_plasma_electrolysis_rev2.pdf3.03 MBPDFView/Open
Please use this identifier to cite or link to this item:http://hdl.handle.net/2115/84373

Title: Synthesis mechanism of cuprous oxide nanoparticles by atmospheric-pressure plasma electrolysis
Authors: Liu, Jiandi Browse this author
Shirai, Naoki Browse this author →KAKEN DB
Sasaki, Koichi Browse this author →KAKEN DB
Keywords: synthesis mechanism
plasma electrolysis
Cu2O nanoparticles
conventional electrolysis
Issue Date: 11-Mar-2021
Publisher: IOP Publishing
Journal Title: Journal of Physics D : Applied Physics
Volume: 54
Issue: 10
Start Page: 105201
Publisher DOI: 10.1088/1361-6463/abca2a
Abstract: The synthesis mechanism of cuprous oxide (Cu2O) nanoparticles by atmospheric-pressure plasma electrolysis was investigated experimentally. In the plasma electrolysis system, a helium plasma in contact with an NaCl electrolyte was used as the cathode, while a copper plate which was partly immersed into the electrolyte was used as the counter electrode. X-ray powder diffraction, field-emission scanning electron microscopy, and transmission electron microscopy were used for characterizing the synthesized products. The results indicate that the Cl- concentration and the pH value of the electrolyte dominate the synthesis of Cu2O nanoparticles. The reaction between CuCl2- produced via the anodic dissolution of Cu and OH- produced by plasma irradiation is responsible for the formation of Cu2O. The comparison between the plasma and conventional electrolysis has also been carried out, since the anodic dissolution of the Cu plate and the production of OH- are also available in the conventional electrolysis. As a result, we also observed the synthesis of Cu2O nanoparticles by the conventional electrolysis. However, we observed the differences between the plasma and conventional electrolysis in the synthesis rate, the minimum NaCl concentration, and the size and the shape of synthesized nanoparticles.
Type: article (author version)
URI: http://hdl.handle.net/2115/84373
Appears in Collections:工学院・工学研究院 (Graduate School of Engineering / Faculty of Engineering) > 雑誌発表論文等 (Peer-reviewed Journal Articles, etc)

Submitter: 白井 直機

Export metadata:

OAI-PMH ( junii2 , jpcoar_1.0 )

MathJax is now OFF:


 

 - Hokkaido University