HUSCAP logo Hokkaido Univ. logo

Hokkaido University Collection of Scholarly and Academic Papers >
Graduate School of Engineering / Faculty of Engineering >
Peer-reviewed Journal Articles, etc >

Adsorption behaviour of simulant radionuclide cations and anions in metakaolin-based geopolymer

Files in This Item:

The file(s) associated with this item can be obtained from the following URL: https://doi.org/10.1016/j.jhazmat.2022.128373


Title: Adsorption behaviour of simulant radionuclide cations and anions in metakaolin-based geopolymer
Authors: Niu, Xiaobo Browse this author
Elakneswaran, Yogarajah Browse this author
Islam, Chaerun Raudhatul Browse this author
Provis, John L. Browse this author
Sato, Tsutomu Browse this author →KAKEN DB
Keywords: Geopolymer
Immobilisation
Zeta potential
Ion-exchange
Thermodynamic modelling
Issue Date: 5-May-2022
Publisher: Elsevier
Journal Title: Journal of hazardous materials
Volume: 429
Start Page: 128373
Publisher DOI: 10.1016/j.jhazmat.2022.128373
Abstract: Geopolymers are a class of alkaline-activated materials that have been considered as promising materials for radioactive waste disposal. Currently, metakaolin-based geopolymers (MK-GPs) are attracting interest for the immobilisation of radionuclides in contaminated water from the Fukushima Daiichi Nuclear Power Station. However, the associated chemical interaction mechanisms and the theoretical prediction of the adsorption behaviour of MK-GP in response to cationic radionuclides have not been thoroughly studied or fully understood. In addition, there is a lack of studies on the adsorption capacity of MK-GP for anionic radionuclides. In this study, two types of metakaolin-based (Metastar501 and Sobueclay) geopolymers were synthesised at a K2O:SiO2:H2O ratio of 1:1:13. The binding capacity and interaction mechanism of MK-GP with Cs+, Sr2+, Co2+, I-, IO3-, SeO32-, and SeO42- were evaluated based on the zeta potential, radionuclide binding, and alkali leaching. The results showed that MK-GP does not have the ability to incorporate anionic radionuclides irrespective of the metakaolin source used, but both types of geopolymers have a high capacity to immobilise cationic radionuclides. The uptake of Cs+ was observed as a one-to-one exchange between Cs+ and K+ whereas both one-two and one-one ion exchanges are possible in the case of Sr2+ and Co2+ with K+. The formation of cobalt blue (CoAl2O4) also contributed to the binding of Co2+. Thermodynamic modelling was conducted according to the ion exchange mechanism which predicts the binding of Cs+ and Sr2+ at low concentrations.
Type: article
URI: http://hdl.handle.net/2115/85056
Appears in Collections:工学院・工学研究院 (Graduate School of Engineering / Faculty of Engineering) > 雑誌発表論文等 (Peer-reviewed Journal Articles, etc)

Export metadata:

OAI-PMH ( junii2 , jpcoar_1.0 )

MathJax is now OFF:


 

 - Hokkaido University